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Linear Programming

minimize c’x subjectto Ax < b
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Interval Linear Programming

minimize c’x subject to Ax < b

cX



Feasible and Optimal Solutions

Formally. ..
- Aninterval linear program is a family of linear programs:
minimize c’x subject to Ax < bwithAe€ A, beb,cec,

- x* is (weakly) feasible, if Ax* < bforsomeAcA,beb,

- x* is (weakly) optimal, if it is an optimal solution of
a linear program minc’x: Ax < bwithAe€A,beb,cec



Dependency Problem

max X
s.t. [0,1]x1 —x2 =0,
X <1,
X1,X2 > 0.

Optimal set: {(x1,x2) € R? : x; € [1,00) and x; = 1}



Dependency Problem

max X max X
s.t. [0,1]x1 —x2 =0, s.t. [0,1]x1 —x; <0,
Xy <1, [0,1]X1 — X, >0,

X1,X2 = 0. X2 <1,
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Dependency Problem

max X max X
s.t. [0,1]x1 —x2 =0, s.t. X —x <0,
X <1, 0X1 — X2 > 0,

X1,X2 = 0. Xy <1,

X1, X3 2 0.

Optimal set: {(x1,x2) € R? : x; € [1,00) and x; = 1}
The solution (0,0) is Nnow optimal, too!



Orthant Decomposition

Oettli-Prager (1964), Gerlach (1981)

x € R"solves Ax =b & |AX — be| < Aalx| + ba

x € R" solves Ax < b < Ax —Aalx| <b

X2

X1




Feasibility

- Are all/some scenarios feasible?

- Are there any (weakly) feasible solutions?
(Un)boundedness

- Do all/some scenarios have an unbounded objective
function?

Optimality

- Do all/some scenarios possess an optimal solution?

- Are there any (weakly) optimal solutions?



Computational Complexity

min ¢x min ¢'x min ¢x

Ax=b,x>0 Ax<b Ax<b, x>0
strong feasibility co-NP-hard polynomial polynomial
weak feasibility polynomial NP-hard polynomial
strong unboundedness co-NP-hard polynomial polynomial
weak unboundedness ? NP-hard polynomial
strong optimality co-NP-hard co-NP-hard polynomial
weak optimality NP-hard NP-hard ?




Computational Complexity

Let's fix the matrix A

min ¢’x min ¢’x min ¢'x
T~ Ax=b,x>0 Ax<b Ax<b, x>0
strong feasibility ? polynomial polynomial
weak feasibility polynomial ? polynomial
strong unboundedness ? polynomial polynomial
weak unboundedness ? ? polynomial
strong optimality ? ? polynomial
? ? ?

weak optimality




Weak Feasibility

Oettli-Prager (1964), Gerlach (1981)

x e R"solvesAx=b < |Ax — bc| < AalX| + ba

x € R" solves Ax < b < Ax —Aalx| <b

In general, testing weak feasibility is NP-hard for type Ax < b.

Special case with a fixed matrix is polynomial:

oy
=
ol

<AX< D, x>0,

>
IA

ol ol

X
X

>
IA



Main Result

Theorem
Testing weak feasibility is NP-hard for interval systems in the
form Ax < 0, b'x < 0.

Proof idea: G (oo ) ==

1. Checking feasibility of the system |Ax| < e, eT|x| > 1is an
NP-hard problem. Fact!

2. This problem is equivalent to checking feasibility of the
system |Ax| < ey, y >0, eT|x| > v.

3. The inequality e’|x| —y > 0 is feasible if and only if the
interval inequality [—e, e]’x +y < 0 is weakly feasible.
(By the Gerlach Theorem)



Main Result (cont.)

|Ax| < e, e'|x| > 1is feasible (1)
T
|AX| < ey, y >0, e'|x| > yis feasible (2)

- If x is a feasible solution of (1), then the pair (x, 1) solves
system (2).

- Let (x,y) be a solution of (2). If y > 0, then § solves (1).

- Otherwise, we have Ax = 0,e’|x| > 0 and for some ¢
with 0 < e < e'|x| solves (1).

R S
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Strong Feasibility

Theorem
Testing strong feasibility is co-NP-hard for interval linear
systems of type Ax = b, x > 0.

Why?  Ax=b,x > 0 is weakly infeasible

)

ATy >0,b"y < 0 is weakly feasible
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Strong Feasibility: Testing

For equation-constrained programs, we need to check all
extremal scenarios:

Ax = b + diag(p)ba, x > 0 for each p € {£1}.

For inequalities, there is a worst-case scenario:

n



Weak Unboundedness

Theorem
Testing weak unboundedness is NP-hard for ILPs of type

minc’x : Ax < b.
Why?

minc’x : Ax < b is weakly unbounded

)

Ax < b, Ad <0, c'd < 0is weakly feasible
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Weak Unboundedness

Theorem
Testing weak unboundedness is NP-hard for ILPs of type

minc’x : Ax < b.
Why?

min ¢’x : Ax < b is weakly unbounded
@v—fff———r———— feasirility + uneoundedness

Ax < b, Ad <0, 7c7T7cilV§!Q jis weakly feasible

T— NP-hard By the main theorem
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Weak Unboundedness: Testing

We need to test weak feasibility of the original problem and
the unboundedness constraints:
b<Ax<b,x>0,Ad=0,d>0, c'd< -1,

Ax < b, Ad <0, (c — cpdiag(p))d < —1
for some p € {£1}",
Ax<b,x>0,Ad<0,d>0,cd<-1.
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Strong Unboundedness

Theorem
Testing strong unboundedness is co-NP-hard for ILPs of type

minc’x: Ax=b,x > 0.
Why?

maximize z subjectto Ax=b, x>0, z>0
is strongly unbounded

)

Ax = b, x > 0 is strongly feasible

S~ Proved to ge co-NP-hard
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Strong Unboundedness: Testing

We want to test unboundedness in the worst-case scenario:

minimize ¢'x subject to Ax = b¢ + diag(p)ba, x > 0
for each p € {£1}™,

minimize ¢'x" — c’x? subject to A(x" —x2) < b, x" > 0,
x>0,

minimize ' x subject to Ax < b, x > 0.
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Weak Optimality

For testing weak optimality, we only need to test weak
feasibility of the primal and the dual problem:

b<Ax<b, x>0, Aly <FT,
Ax<b, c<Aly<T, y<0,
Ax< b, x>0, ATy <t y<o.

Note: This is not sufficient in the ceneral casel



Strong Optimality

Theorem

Testing strong optimality is co-NP-hard for ILPs of types
minc’x: Ax=b,x > 0and minc'x : Ax < b.

Why?

minimize 07x subject to Ax = b, x > 0 is strongly optimal

)

Ax = b, x > 0 is strongly feasible

AN

T~ Proved to e co-NP-hard



Strong Optimality: Testing

We can employ duality in linear programming and test strong
feasibility of the primal and the dual problem:

Ax = b¢ + diag(p)ba, x > 0, ATy < cfor each p € {1},
Ax < b, ATy = cc + diag(p)ca, y < 0 for each p € {£1}",
Ax<b, x>0,Aly<c, y<O.



Complexity Results

min ¢'x min ¢'x min ¢'x

Ax=b,x>0 Ax<b Ax<b,x>0
strong feasibility co-NP-hard polynomial polynomial
weak feasibility polynomial polynomial polynomial
strong unboundedness  co-NP-hard polynomial polynomial
weak unboundedness polynomial NP-hard polynomial
strong optimality co-NP-hard co-NP-hard polynomial
weak optimality polynomial polynomial polynomial

19



Complexity Results
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Thanks for your attention!
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