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Feasible and Optimal Solutions

Formally. . .

• An interval linear program is a family of linear programs:

minimize cTx subject to Ax ≤ b with A ∈ A,b ∈ b, c ∈ c,

• x∗ is (weakly) feasible, if Ax∗ ≤ b for some A ∈ A,b ∈ b,
• x∗ is (weakly) optimal, if it is an optimal solution of
a linear program min cTx : Ax ≤ b with A ∈ A,b ∈ b, c ∈ c.
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Dependency Problem

max x1
s. t. [0, 1]x1 − x2 = 0,

x2 ≤ 1,
x1, x2 ≥ 0.

max x1
s. t. x1 − x2 ≤ 0,

x1 − x2 ≥ 0,
x2 ≤ 1,

x1, x2 ≥ 0.

Optimal set: {(x1, x2) ∈ R2 : x1 ∈ [1,∞) and x2 = 1}

The solution (0, 0) is now optimal, too!
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Orthant Decomposition

Oettli–Prager (1964), Gerlach (1981)

x ∈ Rn solves Ax = b ⇔ |Acx− bc| ≤ A∆|x|+ b∆
x ∈ Rn solves Ax ≤ b ⇔ Acx− A∆|x| ≤ b

x1

x2

a

a

ac
a∆
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Main Questions

Feasibility

• Are all/some scenarios feasible?
• Are there any (weakly) feasible solutions?

(Un)boundedness

• Do all/some scenarios have an unbounded objective
function?

Optimality

• Do all/some scenarios possess an optimal solution?
• Are there any (weakly) optimal solutions?
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Computational Complexity

min cTx min cTx min cTx
Ax = b, x ≥ 0 Ax ≤ b Ax ≤ b, x ≥ 0

strong feasibility co-NP-hard polynomial polynomial
weak feasibility polynomial NP-hard polynomial
strong unboundedness co-NP-hard polynomial polynomial
weak unboundedness ? NP-hard polynomial
strong optimality co-NP-hard co-NP-hard polynomial
weak optimality NP-hard NP-hard ?

Let's fix the matrix A
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Weak Feasibility

Oettli–Prager (1964), Gerlach (1981)

x ∈ Rn solves Ax = b ⇔ |Acx− bc| ≤ A∆|x|+ b∆
x ∈ Rn solves Ax ≤ b ⇔ Acx− A∆|x| ≤ b

In general, testing weak feasibility is NP-hard for type Ax ≤ b.

Special case with a fixed matrix is polynomial:

1 b ≤ Ax ≤ b, x ≥ 0,
2 Ax ≤ b,
3 Ax ≤ b, x ≥ 0.
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Main Result

Theorem
Testing weak feasibility is NP-hard for interval systems in the
form Ax ≤ 0, bTx < 0.

Proof idea:

1. Checking feasibility of the system |Ax| ≤ e, eT|x| > 1 is an
NP-hard problem. Fact!

2. This problem is equivalent to checking feasibility of the
system |Ax| ≤ ey, y ≥ 0, eT|x| > y.

3. The inequality eT|x| − y > 0 is feasible if and only if the
interval inequality [−e, e]Tx+ y < 0 is weakly feasible.
(by the Gerlach Theorem)

e = (1, . . . , 1)T
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Main Result (cont.)

|Ax| ≤ e, eT|x| > 1 is feasible (1)

⇕

|Ax| ≤ ey, y ≥ 0, eT|x| > y is feasible (2)

• If x is a feasible solution of (1), then the pair (x, 1) solves
system (2).

• Let (x, y) be a solution of (2). If y > 0, then x
y solves (1).

• Otherwise, we have Ax = 0, eT|x| > 0 and x
eT|x|−ε

for some ε

with 0 < ε < eT|x| solves (1).
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Strong Feasibility

Theorem
Testing strong feasibility is co-NP-hard for interval linear
systems of type Ax = b, x ≥ 0.

Why? Ax = b, x ≥ 0 is weakly infeasible
⇕

ATy ≥ 0,bTy < 0 is weakly feasible

NP-hard by the main theorem

Farkas' Lemma
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Strong Feasibility: Testing

For equation-constrained programs, we need to check all
extremal scenarios:

1 Ax = bc + diag(p)b∆, x ≥ 0 for each p ∈ {±1}m.

For inequalities, there is a worst-case scenario:

2 Ax ≤ b,
3 Ax ≤ b, x ≥ 0.
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Weak Unboundedness

Theorem
Testing weak unboundedness is NP-hard for ILPs of type
min cTx : Ax ≤ b.

Why?

min cTx : Ax ≤ b is weakly unbounded
⇕

Ax ≤ b, Ad ≤ 0, cTd < 0 is weakly feasible

NP-hard by the main theorem

feasibility + unboundedness
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Weak Unboundedness: Testing

We need to test weak feasibility of the original problem and
the unboundedness constraints:

1 b ≤ Ax ≤ b, x ≥ 0, Ad = 0, d ≥ 0, cTd ≤ −1,
2 Ax ≤ b, Ad ≤ 0, (cTc − cT∆diag(p))d ≤ −1
for some p ∈ {±1}n,

3 Ax ≤ b, x ≥ 0, Ad ≤ 0, d ≥ 0, cTd ≤ −1.
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Strong Unboundedness

Theorem
Testing strong unboundedness is co-NP-hard for ILPs of type
min cTx : Ax = b, x ≥ 0.

Why?

maximize z subject to Ax = b, x ≥ 0, z ≥ 0
is strongly unbounded

⇕
Ax = b, x ≥ 0 is strongly feasible

Proved to be co-NP-hard
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Strong Unboundedness: Testing

We want to test unboundedness in the worst-case scenario:

1 minimize cTx subject to Ax = bc + diag(p)b∆, x ≥ 0
for each p ∈ {±1}m,

2 minimize cTx1 − cTx2 subject to A(x1 − x2) ≤ b, x1 ≥ 0,
x2 ≥ 0,

3 minimize cTx subject to Ax ≤ b, x ≥ 0.
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Weak Optimality

For testing weak optimality, we only need to test weak
feasibility of the primal and the dual problem:

1 b ≤ Ax ≤ b, x ≥ 0, ATy ≤ c,
2 Ax ≤ b, c ≤ ATy ≤ c, y ≤ 0,
3 Ax ≤ b, x ≥ 0, ATy ≤ c, y ≤ 0.

Note: This is not sufficient in the general case!
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Strong Optimality

Theorem
Testing strong optimality is co-NP-hard for ILPs of types
min cTx : Ax = b, x ≥ 0 and min cTx : Ax ≤ b.

Why?

minimize 0Tx subject to Ax = b, x ≥ 0 is strongly optimal
⇕

Ax = b, x ≥ 0 is strongly feasible

Proved to be co-NP-hard
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Strong Optimality: Testing

We can employ duality in linear programming and test strong
feasibility of the primal and the dual problem:

1 Ax = bc + diag(p)b∆, x ≥ 0, ATy ≤ c for each p ∈ {±1}m,
2 Ax ≤ b, ATy = cc + diag(p)c∆, y ≤ 0 for each p ∈ {±1}n,
3 Ax ≤ b, x ≥ 0, ATy ≤ c, y ≤ 0.
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Complexity Results

min cTx min cTx min cTx
Ax = b, x ≥ 0 Ax ≤ b Ax ≤ b, x ≥ 0

strong feasibility co-NP-hard polynomial polynomial
weak feasibility polynomial polynomial polynomial
strong unboundedness co-NP-hard polynomial polynomial
weak unboundedness polynomial NP-hard polynomial
strong optimality co-NP-hard co-NP-hard polynomial
weak optimality polynomial polynomial polynomial

Thanks for your attention!
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