2 Theory \& Definitions

Exercise 1. Let P, Q be convex polyhedra and let P_{I}, Q_{I} be the associated integer polyhedra, i.e. $P_{I}=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)$. Decide, whether the following inclusions hold (prove or give a counterexample):
a) $(P+Q)_{I} \subseteq P_{I}+Q_{I}$,
b) $(P+Q)_{I} \supseteq P_{I}+Q_{I}$.

Exercise 2. Is the following matrix totally unimodular?

$$
\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Exercise 3. Let $A \in \mathbb{Z}^{n \times n}$ be a unimodular matrix. Is the inverse A^{-1} also unimodular? Is A^{-1} totally unimodular for a non-singular totally unimodular matrix A ?

Exercise 4. Let $\sigma(\cdot)$ denote the size of the binary representation of a given number.
a) Show that $\sigma(a+b) \leq \sigma(a)+\sigma(b)$ holds for each $a, b \in \mathbb{Z}$.
b) Show that $\sigma(a+b) \leq \sigma(a)+\sigma(b)$ does not hold, in general, for $a, b \in \mathbb{Q}$.
c) Show that $\sigma(a \cdot b) \leq \sigma(a)+\sigma(b)$ holds for each $a, b \in \mathbb{Q}$.

