3 Methods for Solving Integer Programs

Exercise 1. Solve the integer linear program

$$
\begin{array}{ll}
\max & x_{1}+3 x_{2} \\
\text { s.t. } & x_{1}+5 x_{2} \leq 12 \\
& x_{1}+2 x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \in \mathbb{Z}
\end{array}
$$

a) using Gomory's cutting plane method,
b) using branch-and-bound with linear programming relaxations.

Exercise 2. Let $\alpha>0$ be given. Find the minimal description of the convex hull of the set

$$
M=\{(x, y) \in \mathbb{Z} \times \mathbb{R}: x-y \leq \alpha, y \geq 0\}
$$

Exercise 3. Show that a cutting plane for a pure integer program can also be defined as follows: Let $d_{k 0} \notin \mathbb{Z}$, i.e. the right-hand side of the $k^{t h}$ row is not integer in the final ℓ-table of the lexicographic dual simplex method. Then, the cutting plane is given by

$$
\sum_{j \in I} x_{N_{j}}=1, \text { where } I=\left\{j \in\{1, \ldots, n\}: d_{k j} \notin \mathbb{Z}\right\}
$$

Exercise 4. Modify the branch-and-bound algorithm to find a "sufficiently good" feasible solution whose objective value is within $\mathrm{p} \%$ of the optimum value.

