5 Special Cases

Exercise 1. Decide which of the following variants of the knapsack problem with $A, a, b, c \geq 0$ can be transformed into one of the other forms $(P 1)-(P 4)$:
(P1) max $c^{T} x$ subject to $a^{T} x \leq b, x \in\{0,1\}^{n}$,
$(\mathbf{P 2}) \max c^{T} x$ subject to $a^{T} x \leq b, x \geq 0, x \in \mathbb{Z}^{n}$,
(P3) max $c^{T} x$ subject to $A^{T} x \leq b, x \in\{0,1\}^{n}$,
$(\mathbf{P} 4) \max c^{T} x$ subject to $a^{T} x=b, x \in\{0,1\}^{n}$.

Exercise 2. Find all facet-defining inequalities for the symmetric TSP with $n=4$.

Exercise 3. Let two integers $n \geq 3$ and $m \geq 2$ be given. Let P denote the convex hull of the points $(x, y) \in\{0,1\}^{m \times n} \times\{0,1\}^{n}$ satisfying

$$
\begin{array}{ll}
\sum_{j=1}^{n} x_{i j}=1, & i=1, \ldots, m \\
0 \leq x_{i j} \leq y_{j} \leq 1, & i=1, \ldots, m, j=1, \ldots, n
\end{array}
$$

a) Show that $y_{j} \leq 1$ defines a facet of P for all $j=1, \ldots, n$.
b) Show that $x_{i j} \leq y_{j}$ defines a facet of P for all $i=1, \ldots, m$ and $j=1, \ldots, n$.
[2 pts]
Exercise 4. Let x^{*} denote the optimal solution of a set covering problem and let x^{H} be the heuristic solution found by the greedy algorithm. Find an instance, for which the approximation bound

$$
c^{T} x^{H} \leq H(d) c^{T} x^{*}
$$

with $d=\max _{j=1, \ldots, n}\left|S_{j}\right|$ and $H(k)=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k}$, is achieved as tightly as possible. [3 pts]

Bonus

Exercises from this section can be used to replace any missing points, including homework set 5.
Exercise 1. Find an interesting application for one of the special-case problems discussed in the lecture (knapsack, TSP, facility location, set cover). Write down a (possibly simplified) model for the chosen application and explain the necessary constraints and variables.
[1 pt]

Exercise 2. Suggest a new heuristic, cutting plane or branching rule for one of the special-case problems and discuss its properties.

