General information

- Webpage: www.elif.cz/CP_1617.html
- E-mail: elif@kam.mff.cuni.cz
- Credit for the tutorial will be awarded for obtaining at least 50% of the points in each of the 5 sets of homework problems.

Exercise 1. Charles wants to enroll in some of the classes $\left\{c_{1}, \ldots, c_{5}\right\}$. Using integer linear programming constraints, help him model the following requirements:
a) he has to take at least two classes,
b) if he takes c_{1}, then he also has to take c_{5},
c) if he takes c_{2}, then he cannot take c_{4},
d) he can take c_{3} only if he also takes c_{1} or c_{2},
e) he can take c_{4} only if he also takes c_{2} and c_{3},
f) if he takes two or more classes from the set $\left\{c_{3}, c_{4}, c_{5}\right\}$, then he cannot take c_{2}.

Exercise 2. Formulate the following constraints using integer linear programming:
a) $x \in\{1,2,5,22,42\}$,
b) $z=\min \{x, y\}$ for variables $x, y \in[-K, K]$,
c) $z \in\left\{x \in \mathbb{Z}^{n}: A x \leq b\right\} \backslash\left\{x^{*}\right\}$ for a given $x^{*} \in \mathbb{R}^{n}$,

Exercise 3. Formulate an integer linear program describing a union of k polytopes in the form

$$
P^{i}=\left\{x \in \mathbb{R}^{n}: A^{i} x \leq b^{i}, 0 \leq x \leq u^{i}\right\}, \text { for } i \in\{1, \ldots, k\}
$$

Exercise 4. Model a given piecewise linear function $f(x)$ on an interval $\left[x_{0}, x_{m}\right]$ with breakpoints at $x_{0}, \ldots, x_{m} \in \mathbb{R}$ and values at the breakpoints $a_{0}, \ldots, a_{m} \in \mathbb{R}$.

Exercise 5. Formulate an integer linear program for solving a given instance of the Sudoku game.
Exercise 6. A company produces paper rolls in a uniform width of 100 cm and sells smaller rolls of widths $14 \mathrm{~cm}, 31 \mathrm{~cm}, 36 \mathrm{~cm}$ and 45 cm . Each 100 cm roll can be cut into two or more smaller rolls. The customer has ordered the following amounts of paper rolls:

Width	14	31	36	45
Quantity	211	395	610	97

Find a model minimizing the number of 100 cm rolls needed to satisfy the order and determine how to cut the rolls.

Exercise 7. Model the following graph problems as integer linear programs:
a) minimum vertex cover (a set of vertices such that each edge is incident to some vertex in the set),
b) maximum matching (a set of edges without common vertices),
c) maximum independent set (a subset of pairwise non-adjacent nodes),
d) chromatic number (the smallest number of colors needed to color a graph).

General information

- Webpage: www.elif.cz/CP_1617.html
- E-mail: elif@kam.mff.cuni.cz
- Credit for the tutorial will be awarded for obtaining at least 50% of the points in each of the 5 sets of homework problems.

Exercise 1. Charles wants to enroll in some of the classes $\left\{c_{1}, \ldots, c_{5}\right\}$. Using integer linear programming constraints, help him model the following requirements:
a) he has to take at least two classes,
b) if he takes c_{1}, then he also has to take c_{5},
c) if he takes c_{2}, then he cannot take c_{4},
d) he can take c_{3} only if he also takes c_{1} or c_{2},
e) he can take c_{4} only if he also takes c_{2} and c_{3},
f) if he takes two or more classes from the set $\left\{c_{3}, c_{4}, c_{5}\right\}$, then he cannot take c_{2}.

Exercise 2. Formulate the following constraints using integer linear programming:
a) $x \in\{1,2,5,22,42\}$,
b) $z=\min \{x, y\}$ for variables $x, y \in[-K, K]$,
c) $z \in\left\{x \in \mathbb{Z}^{n}: A x \leq b\right\} \backslash\left\{x^{*}\right\}$ for a given $x^{*} \in \mathbb{R}^{n}$,

Exercise 3. Formulate an integer linear program describing a union of k polytopes in the form

$$
P^{i}=\left\{x \in \mathbb{R}^{n}: A^{i} x \leq b^{i}, 0 \leq x \leq u^{i}\right\}, \text { for } i \in\{1, \ldots, k\}
$$

Exercise 4. Model a given piecewise linear function $f(x)$ on an interval $\left[x_{0}, x_{m}\right]$ with breakpoints at $x_{0}, \ldots, x_{m} \in \mathbb{R}$ and values at the breakpoints $a_{0}, \ldots, a_{m} \in \mathbb{R}$.

Exercise 5. Formulate an integer linear program for solving a given instance of the Sudoku game.
Exercise 6. A company produces paper rolls in a uniform width of 100 cm and sells smaller rolls of widths $14 \mathrm{~cm}, 31 \mathrm{~cm}, 36 \mathrm{~cm}$ and 45 cm . Each 100 cm roll can be cut into two or more smaller rolls. The customer has ordered the following amounts of paper rolls:

Width	14	31	36	45
Quantity	211	395	610	97

Find a model minimizing the number of 100 cm rolls needed to satisfy the order and determine how to cut the rolls.

Exercise 7. Model the following graph problems as integer linear programs:
a) minimum vertex cover (a set of vertices such that each edge is incident to some vertex in the set),
b) maximum matching (a set of edges without common vertices),
c) maximum independent set (a subset of pairwise non-adjacent nodes),
d) chromatic number (the smallest number of colors needed to color a graph).

