Exercise 1. Show that the following formulations are equivalent (they describe the same solution set):

- $P_{1}=\left\{x \in\{0,1\}^{4}: 12 x_{1}+9 x_{2}+6 x_{3}+3 x_{4} \leq 14\right\}$,
- $P_{2}=\left\{x \in\{0,1\}^{4}: 4 x_{1}+3 x_{2}+2 x_{3}+x_{4} \leq 4\right\}$,
- $P_{3}=\left\{x \in\{0,1\}^{4}: 4 x_{1}+3 x_{2}+2 x_{3}+x_{4} \leq 4, x_{1}+x_{2}+x_{3} \leq 1, x_{1}+x_{4} \leq 1\right\}$.

Which one would you choose for an integer linear programming model and why?

Exercise 2. Find the best formulation describing the set $\mathbb{Z}^{2} \cap P$, where P is the polyhedron

$$
\left(\begin{array}{rr}
-2 & -1 \\
1 & -2 \\
-2 & 1 \\
1 & 2
\end{array}\right) x \leq\left(\begin{array}{r}
-1 \\
1 \\
1 \\
6
\end{array}\right)
$$

Exercise 3. Show that for proving total unimodularity of a matrix, it is not sufficient to consider only submatrices formed by consecutive rows/columns. How many square submatrices does a matrix $A \in \mathbb{R}^{n \times n}$ have?

Exercise 4. Are the following matrices totally unimodular?

$$
\text { a) }\left(\begin{array}{rrr}
-1 & 0 & 0 \\
1 & 1 & 0 \\
0 & -1 & -1
\end{array}\right), \quad \text { b) }\left(\begin{array}{rrrrr}
1 & 0 & 0 & 1 & -1 \\
0 & -1 & 1 & 0 & 1 \\
1 & 2 & 0 & -1 & -1 \\
1 & 1 & -1 & 2 & 0 \\
-1 & 0 & 0 & 1 & 1
\end{array}\right), \quad \text { c) }\left(\begin{array}{rrrr}
1 & 1 & 0 & -1 \\
-1 & 1 & 1 & 0 \\
0 & -1 & -1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right) \text {. }
$$

Exercise 5. Let $A, B \in \mathbb{Z}^{n \times n}$ be unimodular matrices. Which of the matrices $A^{T}, A+B$, $A \cdot B$ are also unimodular? Do the same properties hold for total unimodularity?

Exercise 6. Let $G=(V, E)$ be a weighted directed graph with a cost function $c: E \rightarrow \mathbb{R}^{+}$. Formulate an (integer) linear program for finding the shortest path from a node $s \in V$ to $t \in V$ and show that the coefficient matrix of the program is totally unimodular.

Exercise 7. A transshipment problem is a modification of a transportation problem with additional nodes through which goods can be transshipped when they are transported from a supply point to a demand point.
a) Formulate the transshipment problem as a network flow problem.
b) Formulate the transshipment problem as a transportation problem.

Exercise 8. A matrix $A \in \mathbb{Z}^{m \times n}$ is said to have interval form, if all its rows are of the form $(0, \ldots, 0,1, \ldots, 1,0, \ldots, 0)$, i.e. all 1-entries appear consecutively. Show that every intervalform matrix is also totally unimodular. (Hint: Use elementary column operations.)

Exercise 1. Show that the following formulations are equivalent (they describe the same solution set):

- $P_{1}=\left\{x \in\{0,1\}^{4}: 12 x_{1}+9 x_{2}+6 x_{3}+3 x_{4} \leq 14\right\}$,
- $P_{2}=\left\{x \in\{0,1\}^{4}: 4 x_{1}+3 x_{2}+2 x_{3}+x_{4} \leq 4\right\}$,
- $P_{3}=\left\{x \in\{0,1\}^{4}: 4 x_{1}+3 x_{2}+2 x_{3}+x_{4} \leq 4, x_{1}+x_{2}+x_{3} \leq 1, x_{1}+x_{4} \leq 1\right\}$.

Which one would you choose for an integer linear programming model and why?

Exercise 2. Find the best formulation describing the set $\mathbb{Z}^{2} \cap P$, where P is the polyhedron

$$
\left(\begin{array}{rr}
-2 & -1 \\
1 & -2 \\
-2 & 1 \\
1 & 2
\end{array}\right) x \leq\left(\begin{array}{r}
-1 \\
1 \\
1 \\
6
\end{array}\right)
$$

Exercise 3. Show that for proving total unimodularity of a matrix, it is not sufficient to consider only submatrices formed by consecutive rows/columns. How many square submatrices does a matrix $A \in \mathbb{R}^{n \times n}$ have?

Exercise 4. Are the following matrices totally unimodular?

$$
\text { a) }\left(\begin{array}{rrr}
-1 & 0 & 0 \\
1 & 1 & 0 \\
0 & -1 & -1
\end{array}\right), \quad \text { b) }\left(\begin{array}{rrrrr}
1 & 0 & 0 & 1 & -1 \\
0 & -1 & 1 & 0 & 1 \\
1 & 2 & 0 & -1 & -1 \\
1 & 1 & -1 & 2 & 0 \\
-1 & 0 & 0 & 1 & 1
\end{array}\right), \quad \text { c) }\left(\begin{array}{rrrr}
1 & 1 & 0 & -1 \\
-1 & 1 & 1 & 0 \\
0 & -1 & -1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right) \text {. }
$$

Exercise 5. Let $A, B \in \mathbb{Z}^{n \times n}$ be unimodular matrices. Which of the matrices $A^{T}, A+B$, $A \cdot B$ are also unimodular? Do the same properties hold for total unimodularity?

Exercise 6. Let $G=(V, E)$ be a weighted directed graph with a cost function $c: E \rightarrow \mathbb{R}^{+}$. Formulate an (integer) linear program for finding the shortest path from a node $s \in V$ to $t \in V$ and show that the coefficient matrix of the program is totally unimodular.

Exercise 7. A transshipment problem is a modification of a transportation problem with additional nodes through which goods can be transshipped when they are transported from a supply point to a demand point.
a) Formulate the transshipment problem as a network flow problem.
b) Formulate the transshipment problem as a transportation problem.

Exercise 8. A matrix $A \in \mathbb{Z}^{m \times n}$ is said to have interval form, if all its rows are of the form $(0, \ldots, 0,1, \ldots, 1,0, \ldots, 0)$, i.e. all 1-entries appear consecutively. Show that every intervalform matrix is also totally unimodular. (Hint: Use elementary column operations.)

