Exercise 1. Find a Chvátal-Gomory cut for the set

$$
\left\{x \in \mathbb{Z}^{5}: 9 x_{1}+12 x_{2}+8 x_{3}+17 x_{4}+13 x_{5} \geq 50, x \geq 0\right\}
$$

cutting off the point $\left(0, \frac{25}{6}, 0,0,0\right)$.
Exercise 2. Consider the following branch-and-bound tree for a minimization problem:

Give the tightest possible bounds on the optimal value. Which nodes can be pruned and which must be explored further?

Exercise 3. Solve the following integer problems by branch-and-bound:

$$
\begin{array}{lr}
\max & 17 x_{1}+10 x_{2}+25 x_{3}+17 x_{4} \\
\text { s.t. } & 5 x_{1}+3 x_{2}+8 x_{3}+7 x_{4} \leq 12 \\
& \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\} \\
& \max \tag{b}\\
& 13 x_{1}+8 x_{2} \\
& \text { s.t. } \quad x_{1}+2 x_{2} \leq 10 \\
& \\
& 5 x_{1}+2 x_{2} \leq 20 \\
& x_{1}, x_{2} \in \mathbb{N}_{0}
\end{array}
$$

Exercise 4. Consider the integer programming problem:

$$
\begin{array}{ll}
\min & x_{n+1} \\
\text { s.t. } & 2 x_{1}+2 x_{2}+\ldots+2 x_{n}+x_{n+1}
\end{array}=n=\left\{\begin{aligned}
& x_{1}, x_{2}, \ldots, x_{n+1}
\end{aligned} \in\{0,1\}\right. \text {. }
$$

Further, let us assume that n is odd.
a) What objective values can be attained by feasible integer solutions?
b) What is the optimal value of a linear relaxation in branch-and-bound, when no more than $\frac{n}{2}$ of the variables x_{1}, \ldots, x_{n} are fixed to 0 or 1 ? Can the corresponding optimal solution be integer?
c) Argue that the branch-and-bound algorithm (with a linear relaxation and branching by a fractional variable) will require the enumeration of an exponential number of subproblems to solve the program.

Exercise 1. Find a Chvátal-Gomory cut for the set

$$
\left\{x \in \mathbb{Z}^{5}: 9 x_{1}+12 x_{2}+8 x_{3}+17 x_{4}+13 x_{5} \geq 50, x \geq 0\right\}
$$

cutting off the point $\left(0, \frac{25}{6}, 0,0,0\right)$.
Exercise 2. Consider the following branch-and-bound tree for a minimization problem:

Give the tightest possible bounds on the optimal value. Which nodes can be pruned and which must be explored further?

Exercise 3. Solve the following integer problems by branch-and-bound:

$$
\begin{array}{lr}
\max & 17 x_{1}+10 x_{2}+25 x_{3}+17 x_{4} \\
\text { s.t. } & 5 x_{1}+3 x_{2}+8 x_{3}+7 x_{4} \leq 12 \\
& \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\} \\
& \max \tag{b}\\
& 13 x_{1}+8 x_{2} \\
& \text { s.t. } \quad x_{1}+2 x_{2} \leq 10 \\
& \\
& 5 x_{1}+2 x_{2} \leq 20 \\
& x_{1}, x_{2} \in \mathbb{N}_{0}
\end{array}
$$

Exercise 4. Consider the integer programming problem:

$$
\begin{array}{ll}
\min & x_{n+1} \\
\text { s.t. } & 2 x_{1}+2 x_{2}+\ldots+2 x_{n}+x_{n+1}
\end{array}=n=\left\{\begin{aligned}
& x_{1}, x_{2}, \ldots, x_{n+1}
\end{aligned} \in\{0,1\}\right. \text {. }
$$

Further, let us assume that n is odd.
a) What objective values can be attained by feasible integer solutions?
b) What is the optimal value of a linear relaxation in branch-and-bound, when no more than $\frac{n}{2}$ of the variables x_{1}, \ldots, x_{n} are fixed to 0 or 1 ? Can the corresponding optimal solution be integer?
c) Argue that the branch-and-bound algorithm (with a linear relaxation and branching by a fractional variable) will require the enumeration of an exponential number of subproblems to solve the program.

