(1) The art of formulating integer programs

Exercise 1.1. Charles wants to enroll in some of the classes $\left\{c_{1}, \ldots, c_{5}\right\}$. Using integer linear programming constraints, help him model the following requirements:
(a) he has to take at least two classes,
(b) if he takes c_{1}, then he also has to take c_{5},
(c) if he takes c_{2}, then he cannot take c_{4},
(d) he can take c_{3} only if he also takes c_{1} or c_{2},
(e) he can take c_{4} only if he also takes c_{2} and c_{3},
(f) if he takes two or more classes from the set $\left\{c_{3}, c_{4}, c_{5}\right\}$, then he cannot take c_{2}.

Exercise 1.2. Formulate the following constraints using integer linear programming:
(a) $x \in\{1,2,5,22,42\}$,
(b) $z=\min \{x, y\}$ for variables $x, y \in[-K, K]$,
(c) $y=|x|$ for variable $x \in[-K, K]$.

Exercise 1.3. Formulate an integer linear program for solving a given instance of the Sudoku puzzle.

Exercise 1.4. Formulate an integer linear program describing a union of k polytopes in the form

$$
P^{i}=\left\{x \in \mathbb{R}^{n}: A^{i} x \leq b^{i}, 0 \leq x \leq u^{i}\right\}, \text { for } i \in\{1, \ldots, k\} .
$$

Exercise 1.5. Model the following graph problems as integer linear programs:
(a) minimum vertex cover (a set of vertices such that each edge is incident to some vertex in the set),
(b) maximum independent set (a subset of pairwise non-adjacent nodes),
(c) chromatic number (the smallest number of colors needed to color a graph).

Exercise 1.6. Model a given piecewise linear function $f(x)$ on an interval $\left[x_{0}, x_{m}\right.$] with breakpoints at $x_{0}, \ldots, x_{m} \in \mathbb{R}$ and values at the breakpoints $a_{0}, \ldots, a_{m} \in \mathbb{R}$.

Exercise 1.7. A company produces paper rolls in a uniform width of 100 cm and sells smaller rolls of widths $14 \mathrm{~cm}, 31 \mathrm{~cm}, 36 \mathrm{~cm}$ and 45 cm . Each 100 cm roll can be cut into two or more smaller rolls. The customer has ordered the following amounts of paper rolls:

$$
\begin{array}{l|cccc}
\text { Width } & 14 & 31 & 36 & 45 \\
\hline \text { Quantity } & 211 & 395 & 610 & 97
\end{array}
$$

Find a model minimizing the number of 100 cm rolls needed to satisfy the order and determine how to cut the rolls.

