(2) Integer polyhedra, unimodularity \& complexity

Exercise 2.1. Show that the following formulations are equivalent (they describe the same solution set):

- $P_{1}=\left\{x \in\{0,1\}^{4}: 12 x_{1}+9 x_{2}+6 x_{3}+3 x_{4} \leq 14\right\}$,
- $P_{2}=\left\{x \in\{0,1\}^{4}: 4 x_{1}+3 x_{2}+2 x_{3}+x_{4} \leq 4\right\}$,
- $P_{3}=\left\{x \in\{0,1\}^{4}: 4 x_{1}+3 x_{2}+2 x_{3}+x_{4} \leq 4, x_{1}+x_{2}+x_{3} \leq 1, x_{1}+x_{4} \leq 1\right\}$.

Which one would you choose for an integer linear programming model and why?
Exercise 2.2. Find the best formulation describing the set $\mathbb{Z}^{2} \cap P$, where P is the polyhedron

$$
\left(\begin{array}{rr}
-2 & -1 \\
1 & -2 \\
-2 & 1 \\
1 & 2
\end{array}\right) x \leq\left(\begin{array}{r}
-1 \\
1 \\
1 \\
6
\end{array}\right)
$$

Exercise 2.3. Are the following matrices totally unimodular?
а) $\left(\begin{array}{rrr}-1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & -1 & -1\end{array}\right)$,
b) $\left(\begin{array}{rrrrr}1 & 0 & 0 & 1 & -1 \\ 0 & -1 & 1 & 0 & 1 \\ 1 & 2 & 0 & -1 & -1 \\ 1 & 1 & -1 & 2 & 0 \\ -1 & 0 & 0 & 1 & 1\end{array}\right)$,
c) $\left(\begin{array}{rrrr}1 & 1 & 0 & -1 \\ -1 & 1 & 1 & 0 \\ 0 & -1 & -1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$.

Exercise 2.4. Let $A, B \in \mathbb{Z}^{n \times n}$ be unimodular matrices. Which of the matrices $A^{T}, A+B, A \cdot B$ are also unimodular? Do the same properties hold for total unimodularity?

Exercise 2.5. A transshipment problem is a modification of a transportation problem with additional nodes through which goods can be transshipped when they are transported from a supply point to a demand point.
(a) Formulate the transshipment problem as a network flow problem.
(b) Formulate the transshipment problem as a transportation problem.

Exercise 2.6. A matrix $A \in \mathbb{Z}^{m \times n}$ is said to have interval form, if all its rows are of the form $(0, \ldots, 0,1, \ldots, 1,0, \ldots, 0)$, i.e. all 1-entries appear consecutively. Show that every intervalform matrix is also totally unimodular. (Hint: Use elementary column operations.)

Exercise 2.7. Let $\sigma(\cdot)$ denote the size of the binary representation of a given number. Show that

$$
\sigma(a+b) \leq \sigma(a)+\sigma(b)
$$

holds for each $a, b \in \mathbb{Z}$.

