(4) Heuristics, decompositions \& column generation

Exercise 4.1. Consider the set $X=\left\{x \in\{0,1\}^{n}: \sum_{j=1}^{n} a_{j} x_{j} \leq b\right\}$ with $a_{j} \geq 0$ for each $j \in\{1, \ldots, n\}$. Under what conditions
(a) is the set X empty?
(b) is the constraint $\sum_{j=1}^{n} a_{j} x_{j} \leq b$ redundant?
(c) is the constraint $x_{j}=0$ valid?
(d) is the constraint $x_{i}+x_{j} \leq 1$ valid?

Exercise 4.2. Solve the following 0-1 program by deriving and combining logical inequalities:

$$
\begin{aligned}
7 x_{1}+3 x_{2}-4 x_{3}-2 x_{4} & \leq 1 \\
-2 x_{1}+7 x_{2}+3 x_{3}+x_{4} & \leq 6 \\
-2 x_{2}-3 x_{3}-6 x_{4} & \leq-5 \\
3 x_{1}-2 x_{3} & \geq-1 \\
x_{1}, \ldots, x_{4} & \in\{0,1\}
\end{aligned}
$$

Exercise 4.3. Apply Lagrangian relaxation with the subgradient method to the integer program:

$$
\begin{aligned}
& \max 16 x_{1}+10 x_{2}+4 x_{4} \\
& \text { s.t. } \quad 8 x_{1}+2 x_{2}+x_{3}+4 x_{4} \leq 10 \\
& x_{1}+x_{2} \leq 1 \\
& x_{3}+x_{4} \leq 1 \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{aligned}
$$

Exercise 4.4. Apply the column generation algorithm to the following cutting stock problem:

- company stores rolls of length 218 cm ,
- a customer has ordered 44 pieces of length $81 \mathrm{~cm}, 3$ pieces of length 70 cm and 48 pieces of length 68 cm .

