(5) Special cases: Knapsack, TSP and others

Exercise 5.1. Solve the following knapsack problem using the branch-and-bound method:

$$
\begin{array}{ll}
\max & 17 x_{1}+10 x_{2}+25 x_{3}+17 x_{4} \\
\text { za podm. } & 5 x_{1}+3 x_{2}+8 x_{3}+7 x_{4} \leq 12, \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\} .
\end{array}
$$

Exercise 5.2. Solve the following knapsack problem using the pseudopolynomial algorithm:

$$
\begin{array}{lc}
\max & x_{1}+5 x_{2}+3 x_{3}+x_{4}+2 x_{5} \\
\text { s.t. } & 3 x_{1}+4 x_{2}+3 x_{3}+2 x_{4}+x_{5} \leq 7 \\
& x_{1}, \ldots, x_{5} \in\{0,1\}
\end{array}
$$

Exercise 5.3. Consider the knapsack problem in Exercise 4.2.
(a) Find the optimum of the linear relaxation and use it to construct a minimal cover inequality.
(b) Use lifting to strengthen the cut and solve the relaxation of the new problem.

Exercise 5.4. Apply the following heuristics to the symmetric TSP given by the cost matrix

$$
\left(\begin{array}{ccccc}
- & 8 & 4 & 9 & 9 \\
8 & - & 6 & 7 & 10 \\
4 & 6 & - & 5 & 6 \\
9 & 7 & 5 & - & 4 \\
9 & 10 & 6 & 4 & -
\end{array}\right)
$$

(a) nearest neighbor,
(d) nearest insertion,
(b) greedy algorithm,
(e) minimum spanning tree method,
(c) savings heuristics,
(f) 2-change method.

Exercise 5.5. Solve the 1-tree relaxation of the symmetric TSP given by the distance matrix

$$
\left(\begin{array}{cccccc}
- & 10 & 2 & 4 & 6 & 2 \\
10 & - & 9 & 3 & 1 & 3 \\
2 & 9 & - & 5 & 6 & 1 \\
4 & 3 & 5 & - & 2 & 5 \\
6 & 1 & 6 & 2 & - & 3 \\
2 & 3 & 1 & 5 & 3 & -
\end{array}\right)
$$

Exercise 5.6. Use linear relaxation, greedy algorithm and local improvement to solve an instance of the uncapacitated facility location problem with

$$
C^{\prime}=\left(\begin{array}{cccc}
3 & 9 & 2 & 6 \\
5 & 9 & 7 & 6 \\
0 & 7 & 6 & 6 \\
6 & 7 & 4 & 0
\end{array}\right), \quad f=\left(\begin{array}{l}
3 \\
2 \\
3 \\
3
\end{array}\right) .
$$

Exercise 5.7. Let P denote the convex hull of the feasible set for the uncapacitated facility location problem with $m=2$, i.e.

$$
z_{1 j}+z_{2 j}=1 \quad \forall j \in[n], \quad 0 \leq z_{i j} \leq y_{i} \forall i \in\{1,2\}, j \in[n], \quad y_{1}, y_{2} \in\{0,1\},
$$

where $[n]=\{1, \ldots, n\}$. Prove that $z_{i j} \leq y_{i}$ is a facet-defining inequality for P for each $i \in\{1,2\}$ and $j \in[n]$. Can you generalize the proof for any $m \in \mathbb{N}$?

