(1) The Art of Formulating Integer Programs

Problem 1.1. Given binary variables $b_{1}, b_{2}, b_{3} \in\{0,1\}$ and continuous variables $x_{1}, x_{2} \in[0, K]$ for some $K>0$, linearize the following constraints:
(a) $b_{3}=b_{1} \cdot b_{2}$,
(b) $x_{2}=b_{1} \cdot x_{1}$.

Problem 1.2. Let two values K_{1}, K_{2} be given, such that $0<K_{1}<K_{2}$. Formulate integer linear programming constraints representing the requirement

$$
x \in\{0\} \cup\left[K_{1}, K_{2}\right],
$$

where $x \in \mathbb{R}^{+}$is a continuous variable.
Problem 1.3. Nurses at the St. Charles hospital work 8 -hour shifts starting at 0:00, 4:00, 8:00, 12:00, 16:00 and 20:00. Find an integer linear programming model to determine the minimum number of nurses needed to satisfy the following requirements:

Time interval	Minimum number of nurses	
00:00-04:00	3	
$04: 00-08: 00$	8	
$08: 00-12: 00$	10	
12:00-16:00	12	
16:00-20:00	14	
$20: 00-00: 00$	8	$[2 \mathrm{pts}]$

Problem 1.4. Charles wants to enroll in some of the classes at his university. Using integer linear programming constraints, help him model the following requirements:
(a) If Charles takes k or more classes from the set $\left\{p_{1}, \ldots, p_{n}\right\}$, then he also has to take classes q_{1} and q_{2}.
(b) Charles can take class p_{3} only if he also takes p_{1} or p_{2}, but not both.

Problem 1.5. Let $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ be a bounded polyhedron. Given some $x^{*} \in \mathbb{R}^{n}$, formulate the requirement

$$
y \in\left\{x \in \mathbb{Z}^{n}: A x \leq b\right\} \backslash\left\{x^{*}\right\}
$$

using integer linear programming constraints.
Problem 1.6. Formulate an integer linear programming model for any logic puzzle of your choice other than Sudoku (you can consult the list of Nikoli ${ }^{1}$ puzzles for inspiration). [2-4 pts]

[^0]
[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Nikoli_(publisher)

