(2) Integer polyhedra, unimodularity \& complexity

Problem 2.1. Let P, Q be convex polyhedra and let P_{I}, Q_{I} be the associated integer polyhedra, i.e. $P_{I}=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)$. Decide, whether the following inclusions hold (prove the claim or give a counterexample):
(a) $(P+Q)_{I} \subseteq P_{I}+Q_{I}$,
(b) $(P+Q)_{I} \supseteq P_{I}+Q_{I}$.

Problem 2.2. Is the following matrix totally unimodular?

$$
\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Problem 2.3. Show that for proving total unimodularity of a matrix, it is not sufficient to consider only submatrices formed by consecutive rows/columns.
How many square submatrices does a matrix $A \in \mathbb{R}^{n \times n}$ have?
Problem 2.4. Let $A \in \mathbb{Z}^{n \times n}$ be a non-singular matrix.
(a) If A is unimodular, is the inverse matrix A^{-1} also unimodular?
(b) If A is totally unimodular, is the inverse matrix A^{-1} also totally unimodular?

Problem 2.5. Let $\sigma(\cdot)$ denote the size of the binary representation of a given number.
(a) Show that $\sigma(a+b) \leq \sigma(a)+\sigma(b)$ does not hold, in general, for $a, b \in \mathbb{Q}$.
(b) Show that $\sigma(a \cdot b) \leq \sigma(a)+\sigma(b)$ holds for each $a, b \in \mathbb{Q}$.

