(3) Methods: Cutting planes \& Branch-and-bound

Problem 3.1. Formulate a valid inequality (with respect to the set X), which cuts the point x^{*} :
(a) for $X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{Z} \times\{0,1\}: 2 x_{1}-x_{2} \leq 2\right\}$ and the point $x^{*}=(1.5,1)$,
(b) for $X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+} \times \mathbb{Z}_{+}: x_{1} \leq 9, x_{1} \leq 4 x_{2}\right\}$ and the point $x^{*}=\left(9, \frac{9}{4}\right)$.

Problem 3.2. Solve the integer linear program

$$
\begin{array}{ll}
\max & x_{1}+3 x_{2} \\
\text { subject to } & x_{1}+5 x_{2} \leq 12 \\
& x_{1}+2 x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \in \mathbb{Z}
\end{array}
$$

(a) using (first) Gomory's cutting plane method,
(b) using branch-and-bound with linear programming relaxations.

Problem 3.3. Solve the mixed integer program using (second) Gomory's cutting plane method:

$$
\begin{array}{lr}
\max & -x_{1}+x_{2} \\
\text { subject to } & x_{2} \leq 9, \\
& -4 x_{1}+x_{2} \leq 0, \\
x_{1}, x_{2} \geq 0, \\
& x_{1} \in \mathbb{Z}, x_{2} \in \mathbb{R} . \tag{4pts}
\end{array}
$$

Problem 3.4. Let $\alpha>0$ be given. Find the minimal description of the convex hull of the set

$$
\begin{equation*}
M=\{(x, y) \in \mathbb{Z} \times \mathbb{R}: x-y \leq \alpha, y \geq 0\} \tag{2pts}
\end{equation*}
$$

Problem 3.5. How can we modify the branch-and-bound algorithm to find a "sufficiently good" feasible solution whose objective value is within $\mathrm{p} \%$ of the optimum value?

Problem 3.6. Tighten the bounds for the integer variables x_{1}, \ldots, x_{6} subject to the constraints

$$
\begin{aligned}
& 2 x_{1}+7 x_{2}-3 x_{3}+6 x_{4}-9 x_{5}+x_{6} \leq-12, \\
& x_{1}-2 x_{2}+x_{3}+4 x_{4}+2 x_{5}-3 x_{6} \leq 13, \\
& x_{1} \in[1,4], x_{2} \in[0,7], x_{3} \in[4,10], x_{4} \geq 2, x_{5} \in[0,2], x_{6} \geq 0, \\
& x_{1}, \ldots, x_{6} \in \mathbb{Z} .
\end{aligned}
$$

