## (5) Special cases: Knapsack, TSP and others

Problem 5.1. Decide which of the following variants of the knapsack problem with $A, a, b, c \geq 0$ can be transformed into one of the other forms $(P 1)-(P 4)$ :
(P1) max $c^{T} x$ subject to $a^{T} x \leq b, x \in\{0,1\}^{n}$,
(P2) max $c^{T} x$ subject to $a^{T} x \leq b, x \geq 0, x \in \mathbb{Z}^{n}$,
(P3) max $c^{T} x$ subject to $A^{T} x \leq b, x \in\{0,1\}^{n}$,
(P4) max $c^{T} x$ subject to $a^{T} x=b, x \in\{0,1\}^{n}$.
Problem 5.2. Find minimal cover inequalities for the set

$$
\left\{x \in\{0,1\}^{7}: 11 x_{1}+6 x_{2}+6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6}+x_{7} \leq 19\right\} .
$$

Problem 5.3. Consider the binary knapsack set

$$
K=\left\{x \in\{0,1\}^{n}: a^{T} x \leq b\right\}
$$

with $0<a_{j} \leq b$ for all $j \in\{1, \ldots, n\}$. Show that $x_{j} \geq 0$ defines a facet of $\operatorname{conv}(K)$. [5 pts]
Problem 5.4. Consider a TSP instance on the weighted graph

where the cost of a missing edge is equal to the shortest path between the two nodes. Find a comb inequality cutting off the fractional solution

$$
\begin{aligned}
& x_{14}=x_{25}=x_{36}=1, \\
& x_{12}=x_{23}=x_{13}=x_{46}=x_{56}=x_{45}=\frac{1}{2}, \\
& \text { (other values } x_{i j} \text { are } 0 \text { ). }
\end{aligned}
$$

Problem 5.5. Find all facet-defining inequalities for symmetric TSP with $n=4$.

Bonus. Play the Burrito Optimization Game at

```
https://www.gurobi.com/burrito-optimization-game/
```

in Championship mode (match code: MatfyzTournament) and try to beat your opponents! Don't forget to submit your score to the leaderboard and send me your nickname together with the achieved score.

