1 Interval arithmetic

Exercise 1. Prove the following properties of interval arithmetic for $x, y, z \in \mathbb{IR}$:

a)
$$\boldsymbol{x} + \boldsymbol{y} = \boldsymbol{x} + \boldsymbol{z} \Rightarrow \boldsymbol{y} = \boldsymbol{z},$$
 [2 b]

b)
$$\boldsymbol{x} = x_c + x_\Delta [-1, 1].$$
 [2 b

Exercise 2. The magnitude of an interval $x \in \mathbb{IR}$ is defined as

$$\max(\boldsymbol{x}) := \max\{|\overline{x}|, |\underline{x}|\}$$

Show that we can also equivalently define the magnitude as $mag(\mathbf{x}) = |x_c| + x_{\Delta}$. [2 b]

Exercise 3. Let $A, B, C \in \mathbb{IR}^{n \times n}$ be interval matrices.

- a) Show that if $\mathbf{A} = A$ is a real matrix (with $A_{\Delta} = 0$), then $A(\mathbf{B} + \mathbf{C}) = A\mathbf{B} + A\mathbf{C}$. [2 b]
- b) Decide whether the property (AB)C = A(BC) holds for interval matrix multiplication. [2 b]
- c) Determine all interval matrices \mathbf{A} satisfying $\mathbf{A} \mathbf{A} = 0$ (and justify your answer). [2 b]

Exercise 4. Characterize the properties of algebraic structures $(\mathbb{IR}, +)$, $(\mathbb{IR}, -)$ and $(\mathbb{IR}, +, \cdot)$:

- Do the operations satisfy the associative, commutative and distributive property?
- Is there an identity (a neutral element) for the given operation?
- Do all intervals have an inverse with respect to the given operation? [6 b]

Exercise 5. Decide whether the interval function $f: \mathbb{IR} \to \mathbb{IR}$ defined as

$$f([a_{c} - a_{\Delta}, a_{c} + a_{\Delta}]) = \left[a_{c} - \frac{1}{2}a_{\Delta}, a_{c} + \frac{1}{2}a_{\Delta}\right]$$
[2 b]

is inclusion isotonic.

Exercise 6. Let us define the distance between two intervals by the function

$$q(\boldsymbol{a}, \boldsymbol{b}) := \max(|\overline{a} - \overline{b}|, |\underline{a} - \underline{b}|).$$

Moreover, given two interval vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{IR}^n$, let the function $Q : \mathbb{IR}^n \times \mathbb{IR}^n \to \mathbb{R}$ be defined as

$$Q(\boldsymbol{x}, \boldsymbol{y}) = \max_{i=1,\dots,n} q(\boldsymbol{x}_i, \boldsymbol{y}_i)$$

Show that the function Q is a metric.

[5 b]