1 Interval arithmetic

Exercise 1. Prove the following properties of interval arithmetic for $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R} \mathbb{R}$:
a) $\boldsymbol{x}+\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{z} \Rightarrow \boldsymbol{y}=\boldsymbol{z}$,
b) $\boldsymbol{x}=x_{c}+x_{\Delta}[-1,1]$.

Exercise 2. The magnitude of an interval $\boldsymbol{x} \in \mathbb{I} \mathbb{R}$ is defined as

$$
\begin{equation*}
\operatorname{mag}(\boldsymbol{x}):=\max \{|\bar{x}|,|\underline{x}|\} . \tag{2~b}
\end{equation*}
$$

Show that we can also equivalently define the magnitude as $\operatorname{mag}(\boldsymbol{x})=\left|x_{c}\right|+x_{\Delta}$.
Exercise 3. Let $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C} \in \mathbb{R}^{n \times n}$ be interval matrices.
a) Show that if $\boldsymbol{A}=A$ is a real matrix (with $A_{\Delta}=0$), then $A(\boldsymbol{B}+\boldsymbol{C})=A \boldsymbol{B}+A \boldsymbol{C}$.
b) Decide whether the property $(\boldsymbol{A B}) \boldsymbol{C}=\boldsymbol{A}(\boldsymbol{B C})$ holds for interval matrix multiplication. [2 b]
c) Determine all interval matrices \boldsymbol{A} satisfying $\boldsymbol{A}-\boldsymbol{A}=0$ (and justify your answer).

Exercise 4. Characterize the properties of algebraic structures $(\mathbb{R},+),(\mathbb{R},-)$ and $(\mathbb{R},+, \cdot)$:

- Do the operations satisfy the associative, commutative and distributive property?
- Is there an identity (a neutral element) for the given operation?
- Do all intervals have an inverse with respect to the given operation?

Exercise 5. Decide whether the interval function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
f\left(\left[a_{c}-a_{\Delta}, a_{c}+a_{\Delta}\right]\right)=\left[a_{c}-\frac{1}{2} a_{\Delta}, a_{c}+\frac{1}{2} a_{\Delta}\right] \tag{2~b}
\end{equation*}
$$

is inclusion isotonic.
Exercise 6. Let us define the distance between two intervals by the function

$$
q(\boldsymbol{a}, \boldsymbol{b}):=\max (|\bar{a}-\bar{b}|,|\underline{a}-\underline{b}|) .
$$

Moreover, given two interval vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, let the function $Q: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined as

$$
Q(\boldsymbol{x}, \boldsymbol{y})=\max _{i=1, \ldots, n} q\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right)
$$

Show that the function Q is a metric.

