2 Interval linear systems of equations

Exercise 1. The following conditions are necessary for regularity of an interval matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$. Decide which of the conditions are also sufficient:
a) The matrix $A_{y z}=A^{c}+\operatorname{diag}(y) A^{\Delta} \operatorname{diag}(z)$ is non-singular for each $y, z \in\{ \pm 1\}^{n}$.
b) Each matrix $A \in \mathbb{R}^{n \times n}$ with $a_{i j} \in\left\{\underline{a}_{i j}, \bar{a}_{i j}\right\}$ is non-singular.

Exercise 2. Use different conditions to check regularity of the following interval matrices:

$$
\boldsymbol{A}=\left(\begin{array}{cc}
{[-2,0]} & {[3,5]} \tag{5pts}\\
{[-3,-2]} & {[-4,-2]}
\end{array}\right), \quad \boldsymbol{B}=\left(\begin{array}{cc}
{[-2,1]} & {[-3,-1]} \\
{[1,2]} & {[2,4]}
\end{array}\right), \quad \boldsymbol{C}=\left(\begin{array}{cc}
{[-1,1]} & {[2,6]} \\
{[-4,-2]} & {[-1,1]}
\end{array}\right) .
$$

Exercise 3. An interval matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is inverse non-negative if $A^{-1} \geq 0$ holds for each $A \in \boldsymbol{A}$. Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ be regular. Prove that \boldsymbol{A} is inverse non-negative if it satisfies the following conditions:
a) $\rho\left(I_{n}-\underline{A}\right)<1, \bar{A} \leq I_{n}, \forall i: \boldsymbol{a}_{i i}=1$,
b) $\rho\left(I_{n}-\underline{A}\right)<1, \bar{A} \leq I_{n}, \forall i: \underline{a}_{i i} \geq 1$.

Exercise 4. Consider the equation of an electrical circuit in the form

$$
\left(\begin{array}{cc}
R_{1}+R_{2} & -R_{2} \\
-R_{2} & R_{2}+R_{3}
\end{array}\right)\binom{I_{1}}{I_{2}}=\binom{V_{1}}{-V_{2}}
$$

Given the values

$$
V_{1}=10, \quad V_{2}=5, \quad R_{1}=R_{2}=R_{3}=1000 \pm 10 \%
$$

compute an interval enclosure for I_{1} and I_{2}. Can you exploit the parametric dependencies to obtain a tighter enclosure?

Compare different methods for finding the envelopes - implement your own method(s) of choice or utilize the available tools for interval computations (e.g. Versoft, Lime, Intlab, ...).

Exercise 5. Let A_{c} be a randomly generated 2-by-2 matrix

$$
A_{c}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

and let $b=\left(b_{1}, b_{2}\right)^{T}$ be a randomly generated vector. Create a program to draw the set of all feasible solutions of the interval linear system

$$
\left[A_{c}-D, A_{c}+D\right] x=[b-d, b+d]
$$

for $\delta \in\{0.1,0.2, \ldots, 1.0\}$, where $D \in \mathbb{R}^{2 \times 2}$ is a matrix with all entries $D_{i j}=\delta$ and $d \in \mathbb{R}^{2}$ is a vector with $d_{1}=d_{2}=\delta$. Can you estimate how the feasible set changes when changing the parameter δ for fixed data A_{c} and b ?

