3 Interval linear algebra

Exercise 1. Describe and illustrate the set of all weak solutions and the set of all strong solutions to the interval linear system:

$$
\left(\begin{array}{cc}
{[-3,1]} & {[1,2]} \\
{[-1,1]} & -2 \\
{[1,2]} & {[-2,1]} \\
-2 & {[-1,1]}
\end{array}\right)\binom{x_{1}}{x_{2}} \leq\left(\begin{array}{l}
{[3,4]} \\
{[3,4]} \\
{[3,4]} \\
{[3,4]}
\end{array}\right) .
$$

Exercise 2. Compute an interval enclosure for eigenvalues $\boldsymbol{\lambda}_{i}\left(\boldsymbol{A}^{S}\right)$ of the interval matrix

$$
\left(\begin{array}{ccc}
-3 & {[4,6]} & {[-3,-1]} \\
{[4,6]} & {[-5,-1]} & {[1,3]} \\
{[-3,-1]} & {[1,3]} & -1
\end{array}\right)
$$

Exercise 3. Let $c \in \mathbb{R}$ be fixed and let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$. Prove that checking whether $c \in \lambda_{i}\left(\boldsymbol{A}^{S}\right)$ for some $i \in\{1, \ldots, n\}$ is an NP-hard problem.

Exercise 4. Given an interval vector $\boldsymbol{v} \in \mathbb{R}^{n}$, find intervals of eigenvalues $\boldsymbol{\lambda}_{i}\left(\boldsymbol{A}^{S}\right), i \in\{1, \ldots, n\}$, for the diagonal matrix $\boldsymbol{A}^{S}=\operatorname{diag}(\boldsymbol{v})$.

Exercise 5. Decide whether the following propositions are true or false:
a) If the matrix \boldsymbol{A}^{S} is positive semidefinite, then $\lambda_{n}\left(A_{c}\right) \geq \rho\left(A_{\Delta}\right)$.
b) If the matrix \boldsymbol{A}^{S} is positive definite, then $\lambda_{n}\left(A_{c}\right)>\rho\left(A_{\Delta}\right)$.

Exercise 6. Are the interval matrices $\boldsymbol{A}^{S}, \boldsymbol{B}^{S}$ positive (semi-)definite?
a) $\boldsymbol{A}=\left(\begin{array}{ccc}{[6,8]} & {[-3,-1]} & {[-2,0]} \\ {[-3,-1]} & {[7,9]} & {[1,3]} \\ {[-2,0]} & {[1,3]} & {[4,6]}\end{array}\right)$,
b) $\boldsymbol{B}=\left(\begin{array}{ccc}{[13,15]} & {[3,7]} & {[9,11]} \\ {[3,7]} & {[4,8]} & 5 \\ {[9,11]} & 5 & {[13,15]}\end{array}\right)$.
[4 pts]

Exercise 7. Characterize some classes of matrices for which positive (semi)definiteness can be checked easily and formulate the corresponding conditions for testing the property.

