
Lineární algebra 1 13. cvičení

Vlastnosti lineárních zobrazení

Obraz a jádro

Cv. 13.1 Pro lineární zobrazení f : R2×2 → R2×2 dané předpisem A 7→ (A− AT ) rozhod-
něte, které vektory patří do jádra a které do obrazu:

(a) I2,

(b)
(
0 0
0 0

)
,

(c)
(
1 1
1 1

)
,

(d)
(

0 1
−1 0

)
.

Řešení:
Matice A patří do jádra f , pokud f(A) = 02×2. Naopak matice A patří do obrazu
zobrazení f , pokud existuje matice B taková, že f(B) = A.

(a) Patří do jádra, neboť I2 − IT2 = 02×2. Naopak nepatří do obrazu, protože
by musela existovat B, že(

b11 b12
b21 b22

)
−
(
b11 b21
b12 b22

)
=

(
1 0
0 1

)
.

To ale není možné, protože pro prvek na pozici (1, 1) by musel být splněn
vztah

0 = b11 − b11 = 1.

(b) Patří do jádra i do obrazu (je obrazem sama sebe).

(c) Patří do jádra, neboť (
1 1
1 1

)
−
(
1 1
1 1

)
=

(
0 0
0 0

)
.

Naopak nepatří do obrazu, protože na diagonále jsou nenulové prvky.

(d) Nepatří do jádra, neboť(
0 1
−1 0

)
−
(
0 −1
1 0

)
=

(
0 2
−2 0

)
.

Aby matice patřila do obrazu, musela by existovat B taková, že(
b11 b12
b21 b22

)
−
(
b11 b21
b12 b22

)
=

(
0 1
−1 0

)
.
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Rozepsáním po složkách dostáváme soustavu

b11 − b11 = 0,

b12 − b21 = 1,

b21 − b12 = −1,

b22 − b22 = 0.

První a poslední rovnice odpovídají 0 = 0 a zbylé dvě rovnice jsou ekviva-
lentní. Soustava se tedy zjednodušší na jedinou rovnici

b12 − b21 = 1.

Hledaných matic je tedy nekonečně mnoho a jsou tvaru(
b11 b21 + 1
b21 b22

)
, b11, b21, b22 ∈ R.

Příkladem jedné konkrétní matice B může být(
0 1
0 0

)
.

Závěr: Daná matice patří do obrazu.

Cv. 13.2 Uvažujme lineární zobrazení f : Rn → Rn. Označme lineární zobrazení f 1 = f ,
f 2 = f ◦ f , fn = f ◦ fn−1. Ukažte, že Ker(f (n−1)) ⊆ Ker(fn).

Řešení:
Pokud v ∈ Ker(fn−1), pak ze vztahu fn−1(v) = o platí

fn(v) = f(fn−1(v)) = f(o) = o.

Proto také v ∈ Ker(fn).

Cv. 13.3 Buď f : R3 → R2 lineární zobrazení zadané

f(1, 0, 1) = (0, 1)T , f(0, 1, 1) = (−1, 0)T , f(1, 1, 0) = (1, 0)T .

(a) Určete dim f(R3) a dimKer(f).

(b) Najděte bázi f(R3) a Ker(f).

Řešení:

(a) Pro jednodušší manipulaci si vyjádříme zobrazení pomocí maticové repre-
zentace kan[f ]B , kde B = {(1, 0, 1)T , (0, 1, 1)T , (1, 1, 0)T}. Dostáváme(

0 −1 1
1 0 0

)
.

Uvedená matice má dimenzi řádkového (a tedy i sloupcového) prostoru
rovnou 2 a dimenzi jádra rovnou 1. Tyto dimenze odpovídají dim f(R3) a
dimKer(f).
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(b) V předchozí úloze jsme ukázali, že dim f(R3) = 2. Protože f(R3) ⊆ R2,
dostáváme dokonce f(R3) = R2. Libovolná báze prostoru R2 je proto bází
obrazu f(R3). Obecně bázi obrazu můžeme zkonstruovat z obrazů báze pů-
vodního prostoru, tedy vektorů (0, 1)T , (−1, 0)T , (1, 0)T . V tomto případě
je druhý vektor závislý na třetím, jeho odstraněním dostáváme bázi pro-
storu R2.
Pro určení báze jádra můžeme využít maticové reprezentace a nalézt řešení
soustavy (

0 −1 1
1 0 0

)
x = 0.

Množina řešení má tvar {(0, x3, x3)
T ; x3 ∈ R}. Pozor, tato množina odpo-

vídá množině souřadnic bází vzhledem k bázi B, protože

o = [f(x)]kan = kan[f ]B · [x]B.

Zvolíme-li z jádra matice například vektor [x]B = (0, 1, 1)T , odpovídající
vektor x ∈ Ker(f) dopočítáme jako

x = 0 ·

1
0
1

+ 1 ·

0
1
1

+ 1 ·

1
1
0

 =

1
2
1

 .

Cv. 13.4 Co je obrazem prostoru span{sin x, cos x} při zobrazení s maticí ( 0 0
1 0 ) vzhledem

k bázím {cosx− sinx, sinx} a {cosx+ sin x, cos x}?

Řešení:
Z definice konstrukce maticové reprezentace lineárního zobrazení vůči daným
bázím lze z maticové reprezentace vyčíst předpis dané funkce

f(cosx− sin x) = 0 · (cos x+ sin x) + 1 · cos x = cos x,

f(sinx) = 0 · (cos x+ sin x) + 0 · cosx = 0.

Dostáváme tedy, že obraz bude

span{cos x, 0} = span{cos x}.

Jádro pak má tvar span{sinx}.

Cv. 13.5 Buď f : U → V lineární zobrazení a W podprostor f(U). Dokažte, že tzv. úplný
vzor

f−1(W ) = {x ∈ U ; f(x) ∈ W}

je podprostor prostoru U .

Řešení:
Stačí ukázat, že o ∈ f−1(W ) a že je tato množina uzavřená na operace. Protože je
W vektorový podprostor, obsahuje o. Z vlastností lineárního zobrazení je jedním
z vektorů x splňujících f(x) = o i nulový vektor o. Tedy o ∈ f−1(W ).
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Mějme dále x, y ∈ f−1(W ). Z definice f−1(W ) existují a, b ∈ W takové, že
f(x) = a a f(y) = b. Protože W je vektorový podprostor, také a + b ∈ W .
Úpravami dostáváme

a+ b = f(x) + f(y) = f(x+ y).

Dle definice vektor x+ y ∈ f−1(W ), množina je proto uzavřená na sčítání.

Obdobně mějme x ∈ f−1(W ) a skalár α. Platí, že existuje y ∈ W , že f(x) = y
a také platí αy ∈ W . Pomocí úprav

αy = αf(x) = f(αx)

a definice f−1(W ) vektor αx ∈ f−1(W ), množina je proto uzavřená na násobení.

Zobrazení prosté a „na“

Cv. 13.6 Najděte příklady lineárních zobrazení (vyjádřených například maticově f(x) =
Ax) takových, aby zobrazení

(a) bylo prosté a „na“ ,

(b) bylo prosté, ale nebylo „na“ ,

(c) nebylo prosté, ale bylo „na“ ,

(d) nebylo ani prosté, ani „na“ .

Řešení:
Toto je kreativní příklad. Detailnější podmínky na matici A, aby příslušné line-
ární zobrazení bylo / nebylo prosté či „na“ rozebereme později ve Cv. ??.

(a) Například A = I2. Zobrazení je tudíž identita a zřejmě je prosté i „na“ .

(b) Například A =
(

1 0
0 1
1 1

)
. Zobrazení není „na“ , protože sloupce matice A

vygenerují pouze dvoudimenzionální podprostor v prostoru R3. Na dru-
hou stranu, zobrazení je prosté, protože vztah Ax = Ay vede na rovnici
A(x− y) = 0, která má pouze triviální řešení x = y.

(c) Například A = ( 1 0 1
0 1 1 ). Zobrazení pak není prosté, protože A(1, 1, 1)T =

(2, 2)T = A(0, 0, 2)T . Zobrazení je ale „na“ , protože ve sloupcích matice A
je kanonická báze prostoru R2, tudíž vygenerujeme jakýkoli vektor v R2.

(d) Například A = 0.

Cv. 13.7 Mějme lineární zobrazení f : R → R zadané obrazem báze B:

f(2, 1, 1) = (1, 2, 3)T ,

f(1, 3, 5) = (3, 2, 1)T ,

f(7, 1, 4) = (1, 1, 1)T .

Zjistěte, jestli je zobrazení prosté (pokud není, najděte vektory u, v ∈ R3 takové,
že u ̸= v ∧ f(u) = f(v)) a jestli je „na“ (pokud ne, najděte vektor, který nemá
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předobraz, tedy u ∈ R3 takové že ∀v ∈ R3 : f(v) ̸= u). Určete dimenzi a bázi
obrazu a jádra tohoto lineárního zobrazení.

Řešení:
Prostota: Napřed určíme, jestli je zobrazení prosté (injektivní). Pokud by ne-
bylo, pak by nutně existovaly dva různé vektory u, v ∈ R3 (z definičního oboru)
takové, že f(u) = f(v). Upravme si tuto situaci:

f(u) = f(v),

A[f ]B · [u]B = A[f ]B · [v]B,

A[f ]B · [u]B − A[f ]B · [v]B = o,

A[f ]B · ([u]B − [v]B) = o,

kde A[f ]B značí matici lineárního zobrazení a [u]B, [v]B značí vektory souřadnic
vektorů u, v vůči bázi B, tedy [f(u)]A = A[f ]B · [u]B. V našem případě je báze
A kanonická báze. Tedy pokud je zobrazení prosté, pak jeho matice má ve svém
jádře jediný vektor o.

Sestrojíme tedy matici (bude brát vektory souřadnic v bázi B a vracet vektory
souřadnic v kanonické bázi):

kan[f ]B =

1 3 1
2 2 1
3 1 1

 .

Pomocí Gaussovy eliminace najdeme její jádro:1 3 1
2 2 1
3 1 1

 ∼

1 3 1
0 −4 −1
0 −8 −2

 ∼

1 3 1
0 4 1
0 0 0

 .

Vidíme, že jádro má dimenzi jedna a všechna řešení této homogenní soustavy
mají tvar:

{
(−1

4
t,−1

4
t, t)T ; t ∈ R

}
. Můžeme volit vektor [u]B = (1, 1,−4)T , tedy

u = 1 · (2, 1, 1)T + 1 · (1, 3, 5)T − 4 · (7, 1, 4)T = (−25, 0,−10)T ,

který se zobrazí na nulu (stejně jako nulový vektor)

f(0, 0, 0) = (0, 0, 0)T = f(−25, 0,−10).

Všimněte si, že souřadnice vektoru z jádra matice byly vůči bázi B, my chtěli
souřadnice vektoru u v kanonické bázi, museli jsme tedy ještě řešit převod mezi
souřadnicemi.

Dimenze jádra: Vzhledem k tomu, že jádro lineárního zobrazení má dimenzi
jedna, tak jeho bázi může tvořit například vektor u = (−25, 0,−10)T (vzpo-
meňte, jak jsme na něj přišli – platí, že [(−25, 0,−10)T ]B = (1, 1,−4)).

Obraz a surjektivita (jestli je „na“): Každý vektor z obrazu je lineární
kombinací sloupcových vektorů. Speciálně existuje vektor a ∈ R3 takový, že
f(a) = (1, 2, 3)T (psáno v kanonické bázi), to byl náš zadaný vektor (2, 1, 1)T ,
který měl v bázi B souřadnice [(2, 1, 1)T ]B = (1, 0, 0)T .
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Z minulé Gaussovy eliminace vidíme, že dimenze obrazu (což je dimenze sloup-
cového prostoru, což dle věty z přednášky je rovné dimenzi řádkového prostoru)
je rovná dvěma a její báze jsou například první dva sloupci matice kan[f ]B , tedy
vektory (1, 2, 3)T , (3, 2, 1)T (obraz je pak lineární obal těchto dvou vektorů).
Dimenze obrazu je tedy dva a zobrazení f není „na“ .

Vektor mimo obraz: Doplněním těchto dvou vektorů na bázi R3 získáme vek-
tor, který nemá předobraz ve zobrazení f . Například to může být vektor (0, 0, 1)T
(pokud bychom nedoplňovali z kanonické báze, ale z jiné, mohl nám vyjít jiný
vektor).

Cv. 13.8 Jak poznáme ze zadané matice A ∈ Tm×n lineárního zobrazení f : U → V , že
zobrazení f je prosté, resp. „na“?

Řešení:
Lineární zobrazení je prosté právě tehdy, když Ker(f) = {o}. Z toho plyne, že
je zobrazení prosté právě tehdy, když

Ker(A) = {o}.

Jinými slovy, musí 0 = dimKer(A) = n − rank(A), neboli rank(A) = n. To
znamená, že matice A má lineárně nezávislé sloupce.

Lineární zobrazení je „na“ právě tehdy, když dimenze obrazu odpovídá dimenzi
prostoru V . Z toho plyne, že lineární zobrazení je „na“ právě tehdy, když

rank(A) = m.

To znamená, že matice A má lineárně nezávislé řádky.

Cv. 13.9 Rozhodněte, zda je dané lineární zobrazení prosté a zda je „na“ :

(a) f : R2×2 → R3 dané předpisem f
(
a b
c d

)
= (a+ b+ c, a+ b, a)T ,

(b) f : P2 → R4 dané předpisem f(ax2+bx+c) = (a+b, 2b−c, a−b+c, a+b)T ,

(c) f : P2 → R3 dané předpisem f(ax2 + bx+ c) = (a+ b, c, a+ b)T ,

(d) f : P2 → R3 dané předpisem f(ax2 + bx+ c) = (a+ b, 2b− c, a− b)T .

Řešení:
Ve všech případech můžeme vycházet z toho, že lineární zobrazení f : U → V je
prosté právě tehdy, když

Ker(f) = {o}

a je „na“ právě tehdy, když

dim f(U) = dimV.

(a) Zobrazení není prosté, protože

(a+ b+ c, a+ b, a)T = (0, 0, 0)T

má netriviální řešení, například a = b = c = 0 a d ∈ R.
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Zobrazení je „na“ , protože dimenze prostoru

{(a+ b+ c, a+ b, c)T ; a, b, c ∈ R}

je 3. To lze nahlédnout například tak, že lze vygenerovat vhodnout volbou
koeficientů a, b, c vektory (1, 1, 1)T , (1, 1, 0)T , (1, 0, 0)T , které jsou lineárně
nezávislé.

(b) Zobrazení není prosté, protože rovnice

(a+ b, 2b− c, a− b+ c, a+ b)T = (0, 0, 0, 0, 0)T

má množinu řešení {(a,−a,−2a)T ; a ∈ R}.
Zobrazení není ani „na“ , protože P2 má dimenzi 3, zatímco R4 má di-
menzi 4. Při lineárním zobrazení se může dimenze zachovat nebo se snížit.

(c) Zobrazení není prosté, protože rovnice

(a+ b, c, a+ b)T = (0, 0, 0)T

má množinu řešení {(a,−a, 0)T ; a ∈ R}.
Zobrazení není ani „na“ , protože hodnoty v první a poslední složce jsou si
vždy rovny. V obrazu tedy neleží například vektor (1, 0, 0)T .

(d) Zobrazení je prosté, protože rovnice

(a+ b, 2b− c, a− b)T = (0, 0, 0)T

má pouze triviální řešení.
Zobrazení je „na“ , protože množina obrazů {(a + b, c, a − b)T ; a, b, c ∈ R}
se dá vyjádřit jako

{a(1, 0, 1)T + b(1, 0,−1)T + c(0, 1, 0)T ; a, b, c ∈ R}.

Vidíme, že obrazem je lineární obal vektorů (1, 0, 1)T , (1, 0,−1)T , (0, 1, 0)T ,
které jsou lineárně nezávislé. Dimenze obrazu je proto 3, stejně jako dimenze
prostoru P2.

Isomorfismus

Cv. 13.10 Rozhodněte, zda zobrazení f : R3 → R3 dané předpisem

f(x, y, z) = (x+ y − 2z, y − z, x− y)T

je isomorfismem R3 na sebe sama (takzvaným automorfismem).

Řešení:
Isomorfismus dvou vektorových prostorů je vzájemně jednoznačné lineární zob-
razení (tedy lineární zobrazení, které je bijekce). Budeme chtít zjistit dimenzi
jádra (pokud je zobrazení prosté, tak má být nulová) a dimenzi obrazu = di-
menzi sloupcového prostoru (pokud má být zobrazení „na“ , tak musí být stejná
jako dimenze prostoru, do kterého to zobrazení jde).
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Sestavíme matici zobrazení vůči kanonické bázi (jakákoliv báze by posloužila
stejně):

kan[f ]kan =

1 1 −2
0 1 −1
1 −1 0

 .

Abychom určili rank této matice, provedeme Gaussovu eliminaci:1 1 −2
0 1 −1
1 −1 0

 ∼

1 1 −2
0 1 −1
0 −2 2

 ∼

1 1 −2
0 1 −1
0 0 0

 .

Vidíme, že dimenze jádra matice je rovna jedné, takže zobrazení není prosté. To
můžeme i snadno ověřit: f(0, 0, 0) = (0, 0, 0)T = f(1, 1, 1).

Obdobně dimenze sloupcového prostoru je rovná dvěma (vzpomeňte na větu, že
dimenze sloupcového a řádkového prostoru se rovnají). Tedy funkce není „na“ .
Opět bychom mohli ověřit, že například vektor (0, 0, 1)T není v obraze (stejná
Gaussova eliminace doplněná o pravou stranu).

Závěr: zobrazení f není isomorfismem.

Cv. 13.11 Rozhodněte, jestli jsou následující dvojice vektorových prostorů isomorfní. Pokud
ano, najděte vhodný isomorfismus.

(a) R2×2 a R4,

(b) R4 a P3 (prostor reálných polynomů stupně nejvýš tři),

(c) Rm×n a Rn×m,

(d) Rn nad R a Cn nad C,

(e) R2 a
{
x = (x1, x2, x3, x4)

T ∈ R4 | x1 + x2 = x3 + x4 = 0
}
,

(f) R4 a prostor lineárních zobrazení f : R4 → R.

Řešení:
Dva vektorové prostory jsou isomorfní právě tehdy, když mají stejnou dimenzi a
fungují nad stejným tělesem.

(a) Ano, oba mají dimenzi 4. Není těžké rozmyslet, že isomorfismem je napří-
klad zobrazení (

a b
c d

)
7→ (a, b, c, d)T .

(b) Ano, oba mají dimenzi 4. Reálný polynom stupně nejvýš tři

p(x) = p0 + p1x+ p2x
2 + p3x

3

můžeme reprezentovat jako uspořádanou čtveřici (p0, p1, p2, p3)T . Isomorfis-
mem zde je

(p0, p1, p2, p3)
T 7→ p0 + p1x+ p2x

2 + p3x
3.

(c) Ano, isomorfismem bude například transpozice

A 7→ AT .
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(d) Ne, prostory nepracují nad stejným tělesem.

(e) Ano, oba mají dimenzi 2. můžeme volit například zobrazení(
a
b

)
7→ (a,−a, b,−b)T .

(f) Ano, vektoru u ∈ R4 přiřadíme lineární zobrazení f(x) = uTx. Naopak
každé lineární zobrazení f : R4 → R se dá zapsat maticí s jedním řádkem a
čtyřmi sloupci (věta z přednášky).

Cv. 13.12 Buď f : U → V isomorfismus a x1, . . . , xn ∈ U . Dokažte, že jsou-li x1, . . . , xn

lineárně nezávislé, pak i f(x1), . . . , f(xn) jsou lineárně nezávislé.

Řešení:
Mějme, α1, . . . , αn takové, že

∑n
i=1 αif(xi) = o. Dostáváme

o =
n∑

i=1

αif(x)i = f

(
n∑

i=1

αixi

)
.

Pro isomorfismus platí, že f(x) = o právě tehdy, když x = o. Proto také∑n
i=1 αixi = o. Z lineární nezávislosti x1, . . . , xn dostáváme, že αi = 0 pro

všechny i, tedy f(x1), . . . , f(xn) jsou lineárně nezávislé.


