Linearn{ algebra 1 13. cviceni

Vlastnosti linearnich zobrazeni

Obraz a jadro

Cv. 13.1 Pro linearni zobrazeni f: R?*? — R?*2 dané piedpisem A — (A — AT) rozhod-
néte, které vektory patii do jadra a které do obrazu:

(a) I,

Reseni:
Matice A patii do jadra f, pokud f(A) = 0yx2. Naopak matice A patii do obrazu
zobrazeni f, pokud existuje matice B takova, ze f(B) = A.

(a) Patif do jadra, nebot I, — I7 = 0,45. Naopak nepatii do obrazu, protoZe
by musela existovat B, ze

bir bz (b ba _ (10

b21 b22 b12 bgg 0 1/°
To ale neni mozné, protoze pro prvek na pozici (1,1) by musel byt splnén
vztah

Ozbll—bllzl.

(b) Patii do jadra i do obrazu (je obrazem sama sebe).

(c) Patii do jadra, nebot

G)-G =)

Naopak nepatii do obrazu, protoze na diagonéle jsou nenulové prvky.

(d) Nepatii do jadra, nebot

() -0 = (%)

Aby matice patiila do obrazu, musela by existovat B takovéa, ze

(511 512)_<b11 521):(0 1)
ba1  ba biz  ba -1 0/
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Rozepséanim po slozkich dostavame soustavu

b1y — b1 =0,
bia — b1 = 1,
bo1 — b1z = —1,
baa — by = 0.

Prvni a posledni rovnice odpovidaji 0 = 0 a zbylé dvé rovnice jsou ekviva-
lentni. Soustava se tedy zjednodussi na jedinou rovnici

Hledanych matic je tedy nekoneé¢né mnoho a jsou tvaru

b boy +1
( o ) , bi1,b21, b0 € R.
ba1 bao

Prikladem jedné konkrétni matice B muize byt

0 1
0 0/°
Zavér: Danéa matice patii do obrazu.

Cv. 13.2 Uvazujme linearni zobrazeni f: R® — R". Ozna¢me linearni zobrazeni f! = f,
f?=fof, fr=fo frl Ukaite, ze Ker(f"V) C Ker(f™).

Reseni:
Pokud v € Ker(f™"1), pak ze vztahu f"~!(v) = o plati

fr(w) = f(f"H(v)) = flo) = o.
Proto také v € Ker(f").
Cv. 13.3 Bud f: R® — R? linearni zobrazeni zadané
f(1,0,1) = (0, )",  f£(0,1,1) = (-=1,0)", f(1,1,0) = (1,0)".
(a) Urcete dim f(R3) a dim Ker(f).
(b) Najdéte bazi f(R?) a Ker(f).

Resent:

(a) Pro jednodussi manipulaci si vyjadiime zobrazeni pomoci maticové repre-
zentace | [f]5, kde B ={(1,0,1)",(0,1,1)%, (1,1,0)"}. Dostavame

0 -1 1
1 0 0)°

Uvedend matice ma dimenzi fadkového (a tedy i sloupcového) prostoru

rovnou 2 a dimenzi jadra rovnou 1. Tyto dimenze odpovidaji dim f(R?) a
dim Ker(f).
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(b)

V predchozi tloze jsme ukézali, Ze dim f(R?) = 2. Protoze f(R?) C R?
dostévame dokonce f(R?) = R?. Libovolna baze prostoru R? je proto bézi
obrazu f(R?®). Obecné bazi obrazu mizeme zkonstruovat z obrazii baze pu-
vodniho prostoru, tedy vektori (0,1)7,(—1,0)T,(1,0)T. V tomto p¥ipadé
je druhy vektor zavisly na tfetim, jeho odstranénim dostavime bazi pro-
storu R?.

Pro urceni baze jadra mizeme vyuzit maticové reprezentace a nalézt feSeni

soustavy
0 -1 1
(1 0 O) r=0.

MnozZina Fe§enf ma tvar {(0, 3, 23)7; r3 € R}. Pozor, tato mnoZina odpo-

vida mnoziné souradnic bazi vzhledem k bazi B, protoze

0= [f(®)lkan = 1xanlf5 - [2]p-

Zvolime-li z jadra matice naptiklad vektor [x]gp = (0,1,1)T, odpovidajici
vektor x € Ker(f) dopocitame jako

—_
=)
—_
—_

z=0-[0o]+1-|1]+1-[1] =
1 1 0

— Do

Cv. 13.4 Co je obrazem prostoru span{sin x, cos x} pii zobrazeni s matici (9 3) vzhledem
k bazim {cosz — sinz, sinx} a {cosx + sinz, cosx}?

Cv. 13.5

Reseni:
7 definice konstrukce maticové reprezentace linedarniho zobrazeni vici danym
béazim lze z maticové reprezentace vy¢ist predpis dané funkce

f(cosz —sinz) =0 (cosx +sinz) + 1 - cosx = cos z,
f(sinz) =0- (cosz +sinz) +0-cosz = 0.

Dostavame tedy, Ze obraz bude

span{cosz, 0} = span{cosx}.

Jadro pak ma tvar span{sinz}.

Bud

vzor

f: U — V linearni zobrazeni a W podprostor f(U). Dokazte, Ze tzv. uplny

fW)=A{z e U; f(x) e W}

je podprostor prostoru U.

Reseni:

Staci ukazat, ze o € f~1(W) a Ze je tato mnoZina uzaviena na operace. Protoze je
W vektorovy podprostor, obsahuje o. Z vlastnosti linearniho zobrazeni je jednim
z vektort z splitujicich f(z) = o i nulovy vektor o. Tedy o € f~1(W).
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Mgjme déle x,y € f~Y(W). Z definice f~Y(W) existuji a,b € W takove, Ze
f(z) = a a f(y) = b. Protoze W je vektorovy podprostor, také a +b € W.
Upravami dostavame

a+b=f(z)+ fly) = flz+y)

Dle definice vektor z +y € f~}(W), mnoZina je proto uzaviena na s¢itani.

Obdobné méjme x € f~1(W) a skalar «. Plati, Ze existuje y € W, Ze f(z) =y
a také plati ay € W. Pomoci Gprav

ay = af(r) = flar)

a definice f~1(W) vektor ax € f~*(W), mnoZina je proto uzavrena na nasobeni.

Zobrazeni prosté a ,,na*

Cv. 13.6 Najdéte priklady linearnich zobrazeni (vyjadienych napiiklad maticové f(x) =
Az) takovych, aby zobrazeni

Reseni:
Toto je kreativni priklad. Detailnéjsi podminky na matici A, aby prislusné line-
arni zobrazeni bylo / nebylo prosté ¢i ,na“ rozebereme pozdéji ve Cv. 77.

(a) Naptiklad A = I5. Zobrazeni je tudiz identita a zfejmé je prosté i ,na“.

(b) Napriklad A = ((1)(%)) Zobrazeni neni ,na“, protoZze sloupce matice A

vygeneruji pouze dvoudimenziondlni podprostor v prostoru R3. Na dru-
hou stranu, zobrazeni je prosté, protoze vztah Axr = Ay vede na rovnici
A(x —y) = 0, kterd mé pouze trivialni feeni = = y.

(c) Naptiklad A = ({91). Zobrazeni pak neni prosté, protoze A(1,1,1)T =
(2,2)T = A(0,0,2)T. Zobrazeni je ale ,na“, protoze ve sloupcich matice A
je kanonické béaze prostoru R?, tudiz vygenerujeme jakykoli vektor v R2.

(d) Napriklad A = 0.

Cv. 13.7 Méjme linearni zobrazeni f: R — R zadané obrazem baze B:
F2,1,1) = (1,2,3)",
F(1,3,5) = (3,2,1)",
F(7,1,4) = (1,1, 17,

Zjist&te, jestli je zobrazeni prosté (pokud neni, najdéte vektory u, v € R? takové,
zeu #vA f(u) = f(v)) ajestli je ,na* (pokud ne, najdéte vektor, ktery nema
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piedobraz, tedy u € R? takové ze Vv € R®: f(v) # u). Urcete dimenzi a bézi
obrazu a jadra tohoto linearniho zobrazeni.

Reseni:

Prostota: Napted uréime, jestli je zobrazeni prosté (injektivni). Pokud by ne-
bylo, pak by nutné existovaly dva rtizné vektory u,v € R?® (z defini¢ntho oboru)
takove, ze f(u) = f(v). Upravme si tuto situaci:

f(w) = f(v),
A[f]B ulp = A[f]B - [v] g,
alflp - lulp = 4lf]p - vl = o,

A[f]B ([u]p = [v]p) =0

kde ,[f]g znaci matici linedrnfho zobrazeni a [u] s, [v]p znaci vektory souradnic
vektort u, v vidi bazi B, tedy [f(u)]la = 4[flz - [ulp. V naSem ptipadé je baze
A kanonicka baze. Tedy pokud je zobrazeni prosté, pak jeho matice ma ve svém
jadre jediny vektor o.

Sestrojime tedy matici (bude brat vektory soufadnic v bazi B a vracet vektory
soutadnic v kanonické bazi):

kan[f]B =

W N =
=N W

1
1
1

Pomoci Gaussovy eliminace najdeme jeji jadro:

1 31 1 3 1 1 31
221 ~(0 -4 -1]~|0 41
311 0 -8 -2 000

Vidime, Ze jadro mé dimenzi jedna a vSechna TeSeni této homogenni soustavy
maji tvar: {(—1t,—1t,1)T; t € R}. Mazeme volit vektor [u]p = (1,1, —4)7, tedy

u=1-(2,1,1)" +1-(1,3,5)" —4-(7,1,4)" = (-25,0,-10)",
ktery se zobrazi na nulu (stejné jako nulovy vektor)
£(0,0,0) = (0,0,0)" = f(—25,0,—10).

Vsimnéte si, zZe souradnice vektoru z jadra matice byly vici bazi B, my chtéli

soufadnicemi.

Dimenze jadra: Vzhledem k tomu, Ze jadro linearniho zobrazeni ma dimenzi
jedna, tak jeho bazi miize tvorit naptiklad vektor u = (—25,0,—10)T (vzpo-
meiite, jak jsme na né&j prisli — plati, Ze [(—25,0,—10)T]p = (1,1, —4)).

Obraz a surjektivita (jestli je ,,na*): Kazdy vektor z obrazu je linearni
kombinaci sloupcovych vektorii. Specidlné existuje vektor a € R? takovy, Ze
fla) = (1,2,3)T (pséno v kanonické bézi), to byl nas zadany vektor (2,1,1)7,
ktery mél v bazi B souradnice [(2,1,1)7]5 = (1,0,0)T.
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Cv. 13.8

Cv. 13.9

Z minulé Gaussovy eliminace vidime, Ze dimenze obrazu (coZ je dimenze sloup-
cového prostoru, coz dle véty z prednéasky je rovné dimenzi fadkového prostoru)
je rovna dvéma a jeji baze jsou napiiklad prvni dva sloupci matice |, [f] 5, tedy
vektory (1,2,3)7, (3,2,1)T (obraz je pak linearni obal téchto dvou vektori).
Dimenze obrazu je tedy dva a zobrazeni f neni ,na“.

Vektor mimo obraz: Doplnénim téchto dvou vektori na béazi R? ziskdme vek-
tor, ktery nema predobraz ve zobrazeni f. Napiiklad to mize byt vektor (0,0, 1)
(pokud bychom nedopliovali z kanonické baze, ale z jiné, mohl nam vyjit jiny
vektor).

Jak pozname ze zadané matice A € T™*" linearniho zobrazeni f: U — V, Ze
zobrazeni f je prosté, resp. ,na“?

Reseni:
Linearni zobrazeni je prosté pravé tehdy, kdyz Ker(f) = {o}. Z toho plyne, zZe
je zobrazeni prosté pravé tehdy, kdyz

Ker(A) = {o}.

Jinymi slovy, musi 0 = dim Ker(A) = n — rank(A), neboli rank(A) = n. To
znamend, ze matice A méa linedrné nezavislé sloupce.

Linearni zobrazeni je ,na“ pravé tehdy, kdyz dimenze obrazu odpovidé dimenzi
prostoru V. Z toho plyne, Ze linearni zobrazeni je ,na“ pravé tehdy, kdyz

rank(A) = m.
To znamena, Ze matice A ma linearné nezavislé radky.

Rozhodnéte, zda je dané linearni zobrazeni prosté a zda je ,na“:

(a) f: R?**? — R3 dané predpisem f(g b) =(a+b+c,a+b, a)l,

d
(b) f:P?* — R* dané predpisem f(az?+br+c) = (a+b, 2b—c, a—b+c, a+b)7T,
(c) f:P? — R3 dané predpisem f(az?+bxr+c) = (a+b, c, a+b)T,

(d) f: P? — R3 dané piedpisem f(az®+ bxr +c) = (a+b, 2b — ¢, a — b)T.

Reseni:

Ve v8ech pripadech muzeme vychazet z toho, Ze linedrni zobrazeni f: U — V je

prosté pravé tehdy, kdyz

Ker(f) = {o}
a je ,na‘ pravé tehdy, kdyz

dim f(U) = dim V.
(a) Zobrazeni neni prosté, protoze
(a+b+c,a+ba) =(0,00)7"

ma netrivialni reSeni, napiiklad a =b=c=0ad € R.
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Zobrazeni je ,na“, protoze dimenze prostoru
{(a+b+c,a+bc);abceR}

je 3. To 1ze nahlédnout napiiklad tak, Ze lze vygenerovat vhodnout volbou
koeficient a,b, ¢ vektory (1,1,1)T,(1,1,0)%,(1,0,0)T, které jsou linearné
nezavislé.

(b) Zobrazeni neni prosté, protoze rovnice
(a+b,2b—c,a—b+c, a+b’ =(0,000,0)7"

m4 mnozinu Fesenf {(a, —a, —2a)T; a € R}.
Zobrazeni neni ani ,na“, protoze P? méa dimenzi 3, zatimco R* ma di-
menzi 4. Pfi linearnim zobrazeni se muze dimenze zachovat nebo se snizit.

(c) Zobrazeni neni prosté, protoze rovnice
(a+b, ¢, a+b)" =(0,0,07

mé mnozinu Yesen{ {(a, —a,0)’; a € R}.
Zobrazeni neni ani ,na“, protoze hodnoty v prvni a posledni sloZzce jsou si
vzdy rovny. V obrazu tedy nelezi napiiklad vektor (1,0,0)7.

(d) Zobrazeni je prosté, protoze rovnice
(a+b,2b—c, a—b)" =(0,0,0)"

ma pouze trivialni feSeni.
Zobrazeni je ,na“, protoZe mnoZina obrazt {(a + b,c,a — b)T; a,b,c € R}
se da vyjadrit jako

{a(1,0, )" +b(1,0, —1)" +¢(0,1,0)"; a,b,c € R}.

Vidime, Ze obrazem je linearni obal vektort (1,0,1)%, (1,0, —-1)%, (0,1,0)%,
které jsou linearné nezavislé. Dimenze obrazu je proto 3, stejné jako dimenze
prostoru P2

Isomorfismus

Cv. 13.10 Rozhodnéte, zda zobrazeni f: R? — R? dané piedpisem

f(:c,y,z):(x—l—y—Qz,y—z,x—y)T

je isomorfismem R? na sebe sama (takzvanym automorfismem).

Reseni:

[somorfismus dvou vektorovych prostoru je vzajemné jednoznacné linearni zob-
razeni (tedy linearni zobrazeni, které je bijekce). Budeme chtit zjistit dimenzi
jadra (pokud je zobrazeni prosté, tak mé byt nulova) a dimenzi obrazu = di-
menzi sloupcového prostoru (pokud méa byt zobrazeni ,na“, tak musi byt stejna
jako dimenze prostoru, do kterého to zobrazeni jde).



Linearn{ algebra 1 13. cviceni

Sestavime matici zobrazeni vaéi kanonické bazi (jakdkoliv baze by poslouzila

stejné):
1 1 =2
kan [f]kan = 0 1 —1
1 -1 0

Abychom ur¢ili rank této matice, provedeme Gaussovu eliminaci:
1 1 =2 1 1 =2 11 =2
0o 1 -1}J~{0 1 —-1]~101 -1
1 =1 0 0 -2 2 0 0 O
Vidime, Ze dimenze jadra matice je rovna jedné, takZze zobrazeni neni prosté. To
miZeme i snadno ovéiit: £(0,0,0) = (0,0,0)T = f(1,1,1).

Obdobné dimenze sloupcového prostoru je rovna dvéma (vzpomeite na vétu, ze
dimenze sloupcového a Fadkového prostoru se rovnaji). Tedy funkce neni ,na‘.
Opét bychom mohli ovéfit, Ze naptiklad vektor (0,0,1)" neni v obraze (stejna
Gaussova eliminace doplnénda o pravou stranu).

Zéaveér: zobrazeni f neni isomorfismem.

Cv. 13.11 Rozhodnéte, jestli jsou nasledujici dvojice vektorovych prostori isomorfni. Pokud
ano, najdéte vhodny isomorfismus.

(a) R a R4,
(b) R* a P? (prostor redlnych polynomi stupné nejvys tii),
(c) R™*™ g R™*™,

(d) R" nad R a C" nad C,

(e) R? a {& = (z1, 22, x3,24)7 € R* | 21 + 25 = 25 + 24 = 0},
(f)

Reseni:

f) R* a prostor linearnich zobrazeni f: R* — R.

Dva vektorové prostory jsou isomorfni pravé tehdy, kdyz maji stejnou dimenzi a
funguji nad stejnym télesem.

(a) Ano, oba maji dimenzi 4. Neni tézké rozmyslet, Ze isomorfismem je napii-
klad zobrazeni
a b T
(c d) — (a,b,c,d)".

(b) Ano, oba maji dimenzi 4. Realny polynom stupné nejvys tii
p(x) = po + 1 + poa® + psa’

miiZeme reprezentovat jako usporfadanou ¢tvefici (pg, p1, p2, p3)’ . Isomorfis-
mem zde je

(o, P1, P2, 3)T > po + prv + paa® + paa’.

(¢) Ano, isomorfismem bude napiiklad transpozice

A — AT,
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(d) Ne, prostory nepracuji nad stejnym télesem.

(e) Ano, oba maji dimenzi 2. muzeme volit napfiklad zobrazeni

(Z) — (a, —a, b, —b)T.

(f) Ano, vektoru u € R* prifadime linearni zobrazeni f(x) = u’z. Naopak
kazdé linearni zobrazeni f: R* — R se d4 zapsat matici s jednim fadkem a
¢tyfmi sloupci (véta z prednasky).

Cv. 13.12 Bud f: U — V isomorfismus a x1,...,x, € U. Dokazte, ze jsou-li xy,...,x,

linearné nezavislé, pak i f(z1),..., f(z,) jsou linedrné nezavislé.
Reseni:
N 2 v n 2 2
Méjme, az,. .., o, takové, ze ) " | o f(x;) = o. Dostavame
n n
0= E af(x),=f E oz | .
i1 i=1
Pro isomorfismus plati, ze f(x) = o pravé tehdy, kdyz = = o. Proto také
Yor oasx; = o. Z linearni nezévislosti xy,...,r, dostavame, Ze a; = 0 pro

vechny 4, tedy f(x1),..., f(x,) jsou linearné nezavisle.



