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Interval Uncertainty

Interval-valued uncertainty stems from rounding, estimations,
measurement errors, discretization, etc.

Definition
Given two matrices A,A ∈ Rm×n with A ≤ A, we define an
interval matrix [A] = [A,A] as the set

{A ∈ Rm×n : A ≤ A ≤ A}.

For example [A] =
(
[0, 1] 2
[3, 5] [−1, 1]

)
or [b] =

[1, 2]
[0, 3]
[1, 2]
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Interval Linear Systems

Definition
Given [A] ∈ IRm×n, [b] ∈ IRm, we define an interval linear
system of inequalities

[A]x ≤ [b]

as the set of all systems Ax ≤ b with A ∈ [A],b ∈ [b].

Usually, we consider weakly feasible solutions, i.e. solutions
that are feasible for at least one scenario Ax ≤ b of the interval
system.

The weakly feasible set is not convex in general!
But it is convex in each orthant.
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Interval Linear System: An Example

For example, consider the interval
linear system of equations: 5 [1, 2] 1
[1, 2] 5 [0, 2]
[1, 4] [0, 2] 5

 x =

[−2, 2]
[−2, 2]
[−2, 2]



…and its weakly feasible set.
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Interval Linear Programming

Definition
Given [A] ∈ IRm×n, [b] ∈ IRm, [c] ∈ IRn, we define an interval
linear program (in the standard form)

minimize [c]Tx subject to [A]x = [b], x ≥ 0

as the set of all linear programs in the form minimize cTx
subject to Ax = b, x ≥ 0 with A ∈ [A],b ∈ [b], c ∈ [c].

A solution x ∈ Rn is called weakly optimal, if it is optimal for
some scenario of the interval linear program.
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Optimal Value Range

An interval linear program can have different “optimal” values

f(A,b, c) = inf{cTx : Ax = b, x ≥ 0}

throughout the different scenarios with A ∈ [A],b ∈ [b], c ∈ [c].

we allow

infini
te values

We are usually interested in the optimal value range, which is
the interval [f, f] with the extremal optimal values

f([A], [b], [c]) = inf {f(A,b, c) : A ∈ [A],b ∈ [b], c ∈ [c]},
f([A], [b], [c]) = sup {f(A,b, c) : A ∈ [A],b ∈ [b], c ∈ [c]}.
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Interval Linear Program: An Example

maximize x2
subject to [−1, 1]x1 + x2 ≤ 0

x2 ≤ 1

-4 -3 -2 -1 1 2 3 4
-1

1

0

x2

x1
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Interval Linear Program: An Example

maximize x2
subject to [−1, 1]x1 + x2 ≤ 0

x2 ≤ 1

-4 -3 -2 -1 1 2 3 4
-1

1

0

x2

x1

Optimal values: {0, 1}
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The Worst Case

Theorem (Rohn, 1984; Mráz, 1998)
The upper bound f on the optimal value range (i.e. the worst
optimal value) can be computed as

f = sup
s∈{±1}m

f(Ac − diag(s)A∆,bc + diag(s)b∆, c),

where Ac = 1
2(A+ A) and A∆ = 1

2(A− A).
extremal scenarios

We also obtain the corresponding worst scenario:

Ac − diag(s)A∆ ∈ [A]
bc + diag(s)b∆ ∈ [b]

c ∈ [c]
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The Best Case

The best optimal value f can be found by optimizing over the
set of all weakly feasible solutions.

Theorem (Rohn, 1976)
The lower bound f on the optimal value range (i.e. the best
optimal value) can be computed as

f = inf cTx : Ax ≤ b,Ax ≥ b, x ≥ 0.

This is not a scenario of [A]x = [b], x ≥ 0.
So, what is the best scenario? And how "extremal" is it?
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The Best Scenario

Theorem (Rohn, 2006)
Let f([A], [b], [c]) be finite and let x∗ be an optimal solution of
the problem min cTx : Ax ≤ b,Ax ≥ b, x ≥ 0. Then, we have

f([A], [b], [c]) = f(Ac − diag(s)A∆,bc + diag(s)b∆, c),

where

si =


(Acx∗−bc)i
(A∆x∗+b∆)i

, if (A∆x∗ + b∆)i > 0,
1, if (A∆x∗ + b∆)i = 0.

Since s /∈ {±1}m, in general, this is not an extremal scenario.
But, how extremal can it get?
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Towards the Extremes

Theorem (Rohn, 2006)
Let the problem

maxbTp1 − bTp2 : A
Tp1 − ATp2 ≤ c,p1 ≥ 0,p2 ≥ 0

have an optimal solution p∗1 ,p∗2 satisfying p∗1 + p∗2 > 0. Then
f([A], [b], [c]) = f(Ac − diag(s)A∆,bc + diag(s)b∆, c), where

si =

 1 if (p∗2)i > 0,
−1 if (p∗2)i = 0.

In this case, we have an extremal best scenario.
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Interval Transportation Problem (ITP)

minimize
∑
i,j

[cij, cij]xij

subject to
∑
j
xij = [si, si] ∀i

∑
i
xij = [dj,dj] ∀j

xij ≥ 0 ∀i, j

S1

S2

S3

S4

S5
[si, si]

D1

D2

D3

D4
[dj,dj]

[cij, cij]

m supply nodes

n demand nodes
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ITP: The Best Scenario

For the best scenario, we can fix c = c, since we have x ≥ 0.
We can also rewrite the interval problem as a linear program:

minimize
∑
i,j
cijxij

subject to si ≤
∑
j
xij ≤ si, ∀i,

dj ≤
∑
i
xij ≤ dj, ∀j,

xij ≥ 0, ∀i, j.

∑
j
xij = [si, si]

∑
i
xij = [dj, dj]
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ITP: Towards the Extremes

Assume we have s,d > 0.

S1

S2

S3

S4

S5
[si, si]

D1

D2

D3

D4
[dj,dj]

[cij, cij] Then xij > 0 holds for at least
max{m,n} variables xij, since we
have to satisfy all suppliers and
customers.
⇒ At most 2m + 2n − max{m,n}
slacks of the inequalities are non-
zero in a (basic) solution, and at
least max{m,n} slacks are zero.

Thus, we have at least max{m,n}
extremal values si,di in the best

scenario of ITP.
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Conclusion

• We considered the interval linear programming problem of
computing the optimal value range and the corresponding
best and worst scenarios.

• For interval programs in standard form, we can find an ex-
tremalworst-case scenario, in which all coefficients are set
to their respective bounds.

• For the best case, this is not true, in general. Therefore,
we study the extremal structure of the best scenario. For
the special case of an interval transportation problem, we
have derived a bound on the number of extremal coeffi-
cients.
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