Towards the Extremes:

The Best Scenario of an Interval Linear Program

Elif Garajová, Milan Hladík

Department of Applied Mathematics
Faculty of Mathematics and Physics, Charles University, Prague
$30^{\text {th }}$ European Conference on Operational Research (EURO 2019)

Interval Uncertainty

Interval-valued uncertainty stems from rounding, estimations, measurement errors, discretization, etc.

Definition

Giventinn m.trices $A . A \in \mathbb{R}^{m \times n}$ with $A<A$, we define an interval matrix $[A]=[A, A]$ as the set

$$
\left\{A \in \mathbb{R}^{m \times n}: \underline{A} \leq A \leq \bar{A}\right\}
$$

Interval Uncertainty

Interval-valued uncertainty stems from rounding, estimations, measurement errors, discretization, etc.

Definition

Given two matrices $\underline{A}, \bar{A} \in \mathbb{R}^{m \times n}$ with $\underline{A} \leq \bar{A}$, we define an interval matrix $[A]=[A, \bar{A}]$ as the set

$$
\left\{A \in \mathbb{R}^{m \times n}: A \leq A \leq \bar{A}\right\} .
$$

Interval Uncertainty

Interval-valued uncertainty stems from rounding, estimations, measurement errors, discretization, etc.

Definition

Given two matrices $\underline{A}, \bar{A} \in \mathbb{R}^{m \times n}$ with $\underline{A} \leq \bar{A}$, we define an interval matrix $[A]=[A, \bar{A}]$ as the set

$$
\left\{A \in \mathbb{R}^{m \times n}: \underline{A} \leq A \leq \bar{A}\right\} .
$$

For example $[A]=\left(\begin{array}{cc}{[0,1]} & 2 \\ {[3,5]} & {[-1,1]}\end{array}\right)$ or $[b]=\left(\begin{array}{c}{[1,2]} \\ {[0,3]} \\ {[1,2]}\end{array}\right)$.

Interval Linear Systems

Definition

Given $[A] \in \mathbb{R}^{m \times n},[b] \in \mathbb{R}^{m}$, we define an interval linear system of inequalities

$$
[A] x \leq[b]
$$

as the set of all systems $A x \leq b$ with $A \in[A], b \in[b]$.
Usually, we consider weakly feasible solutions, i.e. solutions that are feasible for at least one scenario $A x \leq b$ of the interval system.

Interval Linear Systems

Definition

Given $[A] \in \mathbb{R}^{m \times n},[b] \in \mathbb{R}^{m}$, we define an interval linear system of inequalities

$$
[A] x \leq[b]
$$

as the set of all systems $A x \leq b$ with $A \in[A], b \in[b]$.
Usually, we consider weakly feasible solutions, i.e. solutions that are feasible for at least one scenario $A x \leq b$ of the interval system.

$$
\begin{aligned}
& \text { The weakly feasible set is not convex in General! } \\
& \text { But it is convex in each orthant. }
\end{aligned}
$$

Interval Linear System: An Example

For example, consider the interval linear system of equations:

$$
\left(\begin{array}{ccc}
5 & {[1,2]} & 1 \\
{[1,2]} & 5 & {[0,2]} \\
{[1,4]} & {[0,2]} & 5
\end{array}\right) x=\left(\begin{array}{c}
{[-2,2]} \\
{[-2,2]} \\
{[-2,2]}
\end{array}\right)
$$

Interval Linear System: An Example

For example, consider the interval linear system of equations:
$\left(\begin{array}{ccc}5 & {[1,2]} & 1 \\ {[1,2]} & 5 & {[0,2]} \\ {[1,4]} & {[0,2]} & 5\end{array}\right) x=\left(\begin{array}{c}{[-2,2]} \\ {[-2,2]} \\ {[-2,2]}\end{array}\right)$
...and its weakly feasible set.

Interval Linear Programming

Definition

Given $[A] \in \mathbb{R}^{m \times n},[b] \in \mathbb{R}^{m},[c] \in \mathbb{R}^{n}$, we define an interval linear program (in the standard form)

$$
\text { minimize }[c]^{\top} x \text { subject to }[A] x=[b], x \geq 0
$$

as the set of all linear programs in the form minimize $c^{\top} x$ subject to $A x=b, x \geq 0$ with $A \in[A], b \in[b], c \in[c]$.

A solution $x \in \mathbb{R}^{n}$ is called weakly optimal, if it is optimal for
some scenario of the interval linear program.

Interval Linear Programming

Definition

Given $[A] \in \mathbb{R}^{m \times n},[b] \in \mathbb{R}^{m},[c] \in \mathbb{R}^{n}$, we define an interval linear program (in the standard form)

$$
\text { minimize }[c]^{\top} x \text { subject to }[A] x=[b], x \geq 0
$$

as the set of all linear programs in the form minimize $c^{\top} x$ subject to $A x=b, x \geq 0$ with $A \in[A], b \in[b], c \in[c]$.

A solution $x \in \mathbb{R}^{n}$ is called weakly optimal, if it is optimal for some scenario of the interval linear program.

Optimal Value Range

An interval linear program can have different "optimal" values

$$
f(A, b, c)=\inf \left\{c^{\top} x: A x=b, x \geq 0\right\} \quad \text { infinite values }
$$

throughout the different scenarios with $A \in[A], b \in[b], c \in[c]$.

We are usually interested in the optimal value range, which is
the interval $[f, \bar{f}]$ with the extremal optimal values

$$
\begin{aligned}
& f([A],[b],[c])=\inf \{f(A, b, c): A \in[A], b \in[b], c \in[c]\}, \\
& \bar{f}([A],[b],[c])=\sup \{f(A, b, c): A \in[A], b \in[b], c \in[c]\}
\end{aligned}
$$

Optimal Value Range

An interval linear program can have different "optimal" values

$$
f(A, b, c)=\inf \left\{c^{\top} x: A x=b, x \geq 0\right\}
$$

throughout the different scenarios with $A \in[A], b \in[b], c \in[c]$.
We are usually interested in the optimal value range, which is the interval $[f, \bar{f}]$ with the extremal optimal values

$$
\begin{aligned}
& f([A],[b],[c])=\inf \{f(A, b, c): A \in[A], b \in[b], c \in[c]\}, \\
& \bar{f}([A],[b],[c])=\sup \{f(A, b, c): A \in[A], b \in[b], c \in[c]\} .
\end{aligned}
$$

Interval Linear Program: An Example

$$
\begin{array}{ll}
\operatorname{maximize} & x_{2} \\
\text { subject to } & {[-1,1] x_{1}+x_{2} \leq 0} \\
x_{2} \leq 1
\end{array}
$$

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

$$
\begin{array}{ll}
\operatorname{maximize} & x_{2} \\
\text { subject to } & {[-1,1] x_{1}+x_{2} \leq 0} \\
x_{2} \leq 1
\end{array}
$$

Optimal values: $\{0,1\}$

The Worst Case

Theorem (Rohn, 1984; Mráz, 1998)

The upper bound \bar{f} on the optimal value range (i.e. the worst optimal value) can be computed as

$$
\bar{f}=\sup _{s \in\{ \pm 1\}^{m}} f\left(A_{c}-\operatorname{diag}(s) A_{\Delta}, b_{c}+\operatorname{diag}(s) b_{\Delta}, \bar{c}\right),
$$

where $A_{c}=\frac{1}{2}(\bar{A}+\underline{A})$ and $A_{\Delta}=\frac{1}{2}(\bar{A}-\underline{A})$.

We also obtain the corresponding worst scenario:

$$
\begin{aligned}
A_{c}-\operatorname{diag}(s) A_{\Delta} & \in[A] \\
b_{c}+\operatorname{diag}(s) b_{\Delta} & \in[b] \\
\bar{c} & \in[c]
\end{aligned}
$$

The Worst Case

Theorem (Rohn, 1984; Mráz, 1998)

The upper bound \bar{f} on the optimal value range (i.e. the worst optimal value) can be computed as

$$
\bar{f}=\sup _{s \in\{ \pm 1\}^{m}} f\left(A_{c}-\operatorname{diag}(s) A_{\Delta}, b_{c}+\operatorname{diag}(s) b_{\Delta}, \bar{c}\right)
$$

where $A_{C}=\frac{1}{2}(\bar{A}+\underline{A})$ and $A_{\Delta}=\frac{1}{2}(\bar{A}-\underline{A})$.

We also obtain the corresponding worst scenario:

$$
\begin{aligned}
A_{c}-\operatorname{diag}(s) A_{\Delta} & \in[A] \\
b_{c}+\operatorname{diag}(s) b_{\Delta} & \in[b] \\
\bar{c} & \in[c]
\end{aligned}
$$

The Best Case

The best optimal value f can be found by optimizing over the set of all weakly feasible solutions.

Theorem (Rohn, 1976)

The lower bound f on the optimal value range (i.e. the best optimal value) can be computed as

$$
\underline{f}=\inf \underline{c}^{\top} x: \underline{A} x \leq \bar{b}, \bar{A} x \geq \underline{b}, x \geq 0 .
$$

The Best Case

The best optimal value f can be found by optimizing over the set of all weakly feasible solutions.

Theorem (Rohn, 1976)

The lower bound f on the optimal value range (i.e. the best optimal value) can be computed as

$$
\underline{f}=\inf \underline{c}^{\top} x: \underline{A} x \leq \bar{b}, \bar{A} x \geq \underline{b}, x \geq 0 .
$$

This is not a scenario of $[A] x=[b], x \geq 0$.

The Best Case

The best optimal value f can be found by optimizing over the set of all weakly feasible solutions.

Theorem (Rohn, 1976)

The lower bound f on the optimal value range (i.e. the best optimal value) can be computed as

$$
\underline{f}=\inf \underline{c}^{\top} x: \underline{A} x \leq \bar{b}, \bar{A} x \geq \underline{b}, x \geq 0 .
$$

This is not a scenario of $[A] x=[b], x \geq 0$.
So, what is the Best scenario? And how "extremal" is it?

The Best Scenario

Theorem (Rohn, 2006)

Let $f([A],[b],[c])$ be finite and let x^{*} be an optimal solution of the problem min $\underline{c}^{\top} x: \underline{A} x \leq \bar{b}, \bar{A} x \geq \underline{b}, x \geq 0$. Then, we have

$$
\underline{f([A],[b],[c])=f\left(A_{c}-\operatorname{diag}(s) A_{\Delta}, b_{c}+\operatorname{diag}(s) b_{\Delta}, \underline{c}\right), ~}
$$

where

$$
s_{i}= \begin{cases}\frac{\left(A_{C} x^{*}-b_{c}\right)_{i}}{\left(A_{\Delta} x^{*}+b_{\Delta}\right)_{i}}, & \text { if }\left(A_{\Delta} x^{*}+b_{\Delta}\right)_{i}>0 \\ 1, & \text { if }\left(A_{\Delta} x^{*}+b_{\Delta}\right)_{i}=0\end{cases}
$$

The Best Scenario

Theorem (Rohn, 2006)

Let $f([A],[b],[c])$ be finite and let x^{*} be an optimal solution of the problem min $\underline{c}^{\top} x: \underline{A} x \leq \bar{b}, \bar{A} x \geq \underline{b}, x \geq 0$. Then, we have

$$
\underline{f([A],[b],[c])=f\left(A_{c}-\operatorname{diag}(s) A_{\Delta}, b_{c}+\operatorname{diag}(s) b_{\Delta}, \underline{c}\right), ~}
$$

where

$$
s_{i}= \begin{cases}\frac{\left(A_{c} x^{*}-b_{c}\right)_{i}}{\left(A_{\Delta} x^{*}+b_{\Delta}\right)_{i}}, & \text { if }\left(A_{\Delta} x^{*}+b_{\Delta}\right)_{i}>0 \\ 1, & \text { if }\left(A_{\Delta} x^{*}+b_{\Delta}\right)_{i}=0\end{cases}
$$

Since $s \notin\{ \pm 1\}^{m}$, in General, this is not an extremal scenario. But, how extremal can it Get?

Towards the Extremes

Theorem (Rohn, 2006)

Let the problem

$$
\max \underline{\underline{x}}^{\top} p_{1}-\bar{b}^{\top} p_{2}: \bar{A}^{\top} p_{1}-\underline{A}^{\top} p_{2} \leq \underline{c}, p_{1} \geq 0, p_{2} \geq 0
$$

have an optimal solution p_{1}^{*}, p_{2}^{*} satisfying $p_{1}^{*}+p_{2}^{*}>0$. Then $\underline{f}([A],[b],[c])=f\left(A_{c}-\operatorname{diag}(s) A_{\Delta}, b_{c}+\operatorname{diag}(s) b_{\Delta}, \underline{c}\right)$, where

$$
s_{i}=\left\{\begin{aligned}
1 & \text { if }\left(p_{2}^{*}\right)_{i}>0, \\
-1 & \text { if }\left(p_{2}^{*}\right)_{i}=0 .
\end{aligned}\right.
$$

In this case, we have an extremal best scenario.

Interval Transportation Problem (ITP)

ITP: The Best Scenario

For the best scenario, we can fix $c=\underline{c}$, since we have $x \geq 0$. We can also rewrite the interval problem as a linear program:

$$
\begin{array}{r}
\operatorname{minimize} \sum_{i, j} \underline{c}_{i j} x_{i j} \\
\text { subject to } \underline{s}_{i} \leq \sum_{j} x_{i j}=\left[s_{i j}, \bar{s}_{i}\right] \\
\underline{d}_{j} \leq \bar{s}_{i}, \\
\sum_{i} x_{i j} \leq \bar{d}_{j}, \\
x_{i j} \geq 0, \\
\forall i, \\
\forall j, \\
\forall i, j \\
\sum_{i j}=\left[d_{j}, \bar{d}_{j}\right]
\end{array}
$$

ITP: Towards the Extremes

Assume we have $\underline{s}, \underline{d}>0$.

ITP: Towards the Extremes

Assume we have $\underline{s}, \underline{d}>0$.

Then $x_{i j}>0$ holds for at least $\max \{m, n\}$ variables $x_{i j}$, since we have to satisfy all suppliers and customers.
\Rightarrow At most $2 m+2 n-\max \{m, n\}$
slacks of the inequalities are nonzero in a (hasic) solution and at least max\{ $m, n\}$ slacks are zero. at least $\max \{m, n\}$

ITP: Towards the Extremes

Assume we have $\underline{s}, \underline{d}>0$.

Then $x_{i j}>0$ holds for at least $\max \{m, n\}$ variables $x_{i j}$, since we have to satisfy all suppliers and customers.
\Rightarrow At most $2 m+2 n-\max \{m, n\}$ slacks of the inequalities are nonzero in a (basic) solution, and at least $\max \{m, n\}$ slacks are zero.

ITP: Towards the Extremes

Assume we have $\underline{s}, \underline{d}>0$.

Then $x_{i j}>0$ holds for at least $\max \{m, n\}$ variables $x_{i j}$, since we have to satisfy all suppliers and customers.
\Rightarrow At most $2 m+2 n-\max \{m, n\}$ slacks of the inequalities are nonzero in a (basic) solution, and at least $\max \{m, n\}$ slacks are zero.

Thus, we have at least $\max \{m, n\}$ extremal values s_{i}, d_{i} in the Best scenario of ITP.

Conclusion

- We considered the interval linear programming problem of computing the optimal value range and the corresponding best and worst scenarios.
- For interval programs in standard form, we can find an extremal worst-case scenarin in which all coefficients are set to their respective bounds.
- For the best case, this is not true, in general. Therefore, we studv the extremal structure of the best scenario. For the special case of an interval transportation problem, we have derived a bound on the number of extremal coefficients

Conclusion

- We considered the interval linear programming problem of computing the optimal value range and the corresponding best and worst scenarios.
- For interval programs in standard form, we can find an extremal worst-case scenario, in which all coefficients are set to their respective bounds.
- For the best case, this is not true, in general. Therefore, we study the extremal structure of the best scenario. For the special case of an interval transportation problem, we have derived a bound on the number of extremal coefficients.

Conclusion

- We considered the interval linear programming problem of computing the optimal value range and the corresponding best and worst scenarios.
- For interval programs in standard form, we can find an extremal worst-case scenario, in which all coefficients are set to their respective bounds.
- For the best case, this is not true, in general. Therefore, we study the extremal structure of the best scenario. For the special case of an interval transportation problem, we have derived a bound on the number of extremal coefficients.

References

M. Fiedler
J. Nedoma
J. Ramík
J. Rohn
K. Zimmermann
(2006). Authors: M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, K. Zimmermann

References

M. Fiedler
J. Nedoma
J. Ramik
J. Rohn
K. Zimmermann
(2006). Authors: M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, K. Zimmermann

Thank you for your attention!

