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Interval Uncertainty

Real-world optimization problems are oǒten afflicted by uncer-
tainty. Interval-valued uncertainty stems from:

• rounding errors,
• estimations and approximations,
• measurement errors,
• discretization,
• …
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Representing Interval Uncertainty

Definition
Given two matrices A,A ∈ Rm×n with A ≤ A, we define an
interval matrix [A] = [A,A] as the set

{A ∈ Rm×n : A ≤ A ≤ A}.

Analogously, we define an interval vector (box) [b] = [b,b]
for b,b ∈ Rn with b ≤ b as the set

{b ∈ Rn : b ≤ b ≤ b}.

For example [A] =
(
[0, 1] 2
[3, 5] [−1, 1]

)
or [b] =

[1, 2]
[0, 3]
[1, 2]

.aa
ac

a∆

center Ac =
1
2 (A+ A)

radius A∆ =
1
2 (A− A)
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Interval Linear Programming

Definition
Given [A] ∈ IRm×n, [b] ∈ IRm, [c] ∈ IRn, we define an interval
linear program (in the standard form)

minimize [c]Tx subject to [A]x = [b], x ≥ 0

as the set of all linear programs in the form minimize cTx
subject to Ax = b, x ≥ 0 with A ∈ [A],b ∈ [b], c ∈ [c].

A solution x ∈ Rn is called weakly feasible/optimal, if it is fea-
sible/optimal for some scenario of the interval linear program.
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Dependency Problem

Let us consider a linear program with an interval equation…

max x1
s. t. [0, 1]x1 − x2 = 0,

x2 ≤ 1,
x1, x2 ≥ 0.

max x1
s. t. x1 − x2 ≤ 0,

x1 − x2 ≥ 0,
x2 ≤ 1,

x1, x2 ≥ 0.

Optimal set: {(x1, x2) ∈ R2 : x1 ∈ [1,∞) and x2 = 1}

The solution (0,0) is now optimal, too!
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Dependency Problem

…and split the equation into two inequalities.
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Interval Linear Program: An Example

maximize x2
subject to [−1, 1]x1 + x2 ≤ 0

x2 ≤ 1

-4 -3 -2 -1 1 2 3 4
-1

1

0

x2

x1
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Interval Linear Program: An Example

maximize x2
subject to [−1, 1]x1 + x2 ≤ 0

x2 ≤ 1
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Optimal values: {0, 1}
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Weakly Feasible Solutions

Oettli–Prager (1964), Gerlach (1981)

x ∈ Rn solves [A]x = [b] ⇔ |Acx− bc| ≤ A∆|x|+ b∆
x ∈ Rn solves [A]x ≤ [b] ⇔ Acx− A∆|x| ≤ b

x1

x2
The feasible solution set is not
convex, in general.

But, it becomes convex when
restricted to an orthant.
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x ∈ Rn solves [A]x ≤ [b] ⇔ Acx− A∆|x| ≤ b

x1

x2
Orthant decomposition (ineq.):

Given a signature s ∈ {±1}n, the
corresponding orthant is the set

{x ∈ Rn : diag(s)x ≥ 0}.

Furthermore, we have |x| = diag(s)x.
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Weakly Optimal Solutions

Using duality of classical linear programming, we can obtain
a parametric characterization of the optimal solution set

Ax = b, x ≥ 0,
ATy ≤ c,
cTx = bTy,
A ∈ [A],b ∈ [b], c ∈ [c].

Not
an inte

rval

linea
r prog

ram!

In general, the optimal solution set may be complicated
(non-convex, disconnected). However, for some special cases,
we can derive stronger characterizations.
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Special Case: Fixed Matrix

For a fixed constraint matrix, we can describe the weakly
optimal solution set by the non-linear system

Ax = b, x ≥ 0,ATy ≤ c, xT(c− ATy) = 0,
b ≤ b ≤ b, c ≤ c ≤ c.

Now, complementary slackness can be equivalently restated
as ∀i ∈ {1, . . . ,n} : xi = 0 ∨ zi = 0 with z = c− ATy.

Theorem
The set of weakly optimal solutions of the interval LP

minimize [c]Tx
subject to Ax = [b], x ≥ 0

is a union of at most 2n convex polyhedra.
8
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Special Case: Basis Stability

Definition
Given a basis B ⊆ {1, . . . ,n}, an interval linear program

minimize [c]Tx subject to [A]x = [b], x ≥ 0

is B-stable, if B is an optimal basis for each scenario.

Theorem (Beeck, 1978; Hladík, 2014)
Under unique B-stability, the set of all weakly optimal
solutions is

ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0, xN = 0.

But, B-stability is NP-hard to test!
9
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Complexity of Approximation

By convention, we say that a problem “maximize f(x) subject
to x ∈ X” is NP-hard, if the corresponding decision problem
“Is f(x) ≥ r for some x ∈ X?” is NP-hard.

Theorem
Let S(A, [b], c) denote the optimal set of an interval LP

minimize cTx
subject to Ax = [b], x ≥ 0.

Then, the problem

optimize xi
subject to x ∈ S(A, [b], c)

for i ∈ {1, . . . ,n} is NP-hard.
10



Interval Relaxation

To obtain a simpler approximation of the optimal set, we can
relax the dependencies in the parametric description and
consider the corresponding interval linear program

[A]x = [b], x ≥ 0, [A]Ty ≤ [c], [c]Tx = [b]Ty.

Example:

minimize x1
subject to x1 − x2 = [−1, 1],

x1 ≥ 0, x2 ≥ 0. x1

x2

1 2 3

1

2

3

0
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Decomposition Methods

Orthant decomposition:
For signatures s ∈ {±1}m solve
cTcx− bTcy ≤ cT∆x+ bT∆diag(s)y, cTcx− bTcy ≥ −cT∆x− bT∆diag(s)y,
Ax ≤ b, −Ax ≤ −b, x ≥ 0,
ATcy− AT∆diag(s)y ≤ c,diag(s)y ≥ 0.

Decomposition by complementarity:
For an index set I ⊆ {1, . . . ,n} solve

[A]x = [b],
xi = 0, ([A]Ty)i ≤ [c]i, for i ∈ I,
xj ≥ 0, ([A]Ty)j = [c]j, for j /∈ I.

12
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Linearization (Convexification) Methods

We have the interval relaxation to describe the optimal set:

[A]x = [b], x ≥ 0, [A]Ty ≤ [c], [c]Tx = [b]Ty.

Combining it with the Oettli–Prager and Gerlach theorems, we
obtain a system with absolute-value non-linearities.

Theorem (Beaumont, 1998; Hladík, 2012)
Let y = [y, y] ∈ IR with y < y. Then for every y ∈ y it holds that

|y| ≤ αy+ β,

where
α =

|y| − |y|
y− y , β =

y|y| − y|y|
y− y .

13
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Branch-and-Bound Methods

Approximating the optimal set by an interval box (or a convex
polyhedron) can lead to significant overestimation.

To obtain a tighter approximation, we can also describe the
(non-convex) set by a subpaving, i.e. a union of interval boxes.

Branch-and-bound interval methods have been successfully
applied in solving non-linear constraints and linear parametric
systems yielding a subpaving for the described feasible set.
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Conclusion

• We consider the problem of characterizing the set of all
weakly optimal solutions of an interval linear program.

• Several methods for approximating the optimal set have
been proposed throughout the years, such as enclosures
of the interval relaxation, orhant or complementarity de-
composition or iterative linearization-based algorithms.

• As using interval boxes or general convex polyhedra may
lead to high overestimation of the set, applying a branch-
and-boundmethod to describe the set by a union of boxes
may be beneficial.
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