Solving Interval Linear Programs

From Theory to Algorithms

Elif Garajová, Milan Hladík
Department of Applied Mathematics
Faculty of Mathematics and Physics, Charles University, Prague
$17^{\text {th }}$ Workshop on Advances in Continuous Optimization (EUROPT 2019)

Interval Uncertainty

Real-world optimization problems are often afflicted by uncertainty. Interval-valued uncertainty stems from:

- rounding errors,
- estimations and approximations,
- measurement errors,
- discretization

Interval Uncertainty

Real-world optimization problems are often afflicted by uncertainty. Interval-valued uncertainty stems from:

- rounding errors,
- estimations and approximations,
- measurement errors,
- discretization,

$$
1.215 \leq x \leq 1.321
$$

Interval Uncertainty

Real-world optimization problems are often afflicted by uncertainty. Interval-valued uncertainty stems from:

- rounding errors,
- estimations and approximations,
- measurement errors,
- discretization,

$$
x=5.24 \pm 0.05 \mathrm{~g}
$$

Interval Uncertainty

Real-world optimization problems are often afflicted by uncertainty. Interval-valued uncertainty stems from:

- rounding errors,
- estimations and approximations,
- measurement errors,
- discretization,

$$
x=5.24 \pm 0.05 \mathrm{~g}
$$

$$
\begin{aligned}
& x_{\min }=25.3, x_{\max }=25.9 \\
& 1.215 \leq x \leq 1.321
\end{aligned}
$$

Interval Uncertainty

Real-world optimization problems are often afflicted by uncertainty. Interval-valued uncertainty stems from:

- rounding errors,
- estimations and approximations,
- measurement errors,
- discretization,

$$
x=5.24 \pm 0.05 \mathrm{~g}
$$

- ...

Representing Interval Uncertainty

Definition

Given two matrices $A, \bar{A} \in \mathbb{R}^{m \times n}$ with $A \leq \bar{A}$, we define an interval matrix $[A]=[A, \bar{A}]$ as the set

$$
\left\{A \in \mathbb{R}^{m \times n}: \underline{A} \leq A \leq \bar{A}\right\} .
$$

Analogously, we define an interval vector (box) $[b]=[\underline{b}, \bar{b}]$ for $\underline{b}, \bar{b} \in \mathbb{R}^{n}$ with $\underline{b} \leq \bar{b}$ as the set

$$
\left\{b \in \mathbb{R}^{n}: \underline{b} \leq b \leq \bar{b}\right\} .
$$

Representing Interval Uncertainty

Definition

Given two matrices $A, \bar{A} \in \mathbb{R}^{m \times n}$ with $A \leq \bar{A}$, we define an interval matrix $[A]=[A, \bar{A}]$ as the set

$$
\left\{A \in \mathbb{R}^{m \times n}: \underline{A} \leq A \leq \bar{A}\right\} .
$$

Analogously, we define an interval vector (box) $[b]=[\underline{b}, \bar{b}]$ for $\underline{b}, \bar{b} \in \mathbb{R}^{n}$ with $\underline{b} \leq \bar{b}$ as the set

$$
\left\{b \in \mathbb{R}^{n}: \underline{b} \leq b \leq \bar{b}\right\} .
$$

For example $[A]=\left(\begin{array}{cc}{[0,1]} & 2 \\ {[3,5]} & {[-1,1]}\end{array}\right)$ or $[b]=\left(\begin{array}{l}{[1,2]} \\ {[0,3]} \\ {[1,2]}\end{array}\right)$

Representing Interval Uncertainty

Definition

Given two matrices $A, \bar{A} \in \mathbb{R}^{m \times n}$ with $A \leq \bar{A}$, we define an interval matrix $[A]=[A, \bar{A}]$ as the set

$$
\left\{A \in \mathbb{R}^{m \times n}: \underline{A} \leq A \leq \bar{A}\right\} .
$$

Analogously, we define an interval vector (box) $[b]=[\underline{b}, \bar{b}]$ for $\underline{b}, \bar{b} \in \mathbb{R}^{n}$ with $\underline{b} \leq \bar{b}$ as the set

$$
\left\{b \in \mathbb{R}^{n}: \underline{b} \leq b \leq \bar{b}\right\} .
$$

$$
\begin{aligned}
& \text { center } A_{c}=\frac{1}{2}(\bar{A}+\underline{A}) \\
& \text { radius } A_{\Delta}=\frac{1}{2}(\bar{A}-\underline{A})
\end{aligned}
$$

Interval Linear Programming

Definition

Given $[A] \in \mathbb{R}^{m \times n},[b] \in \mathbb{R}^{m},[c] \in \mathbb{R}^{n}$, we define an interval linear program (in the standard form)

$$
\text { minimize }[c]^{\top} x \text { subject to }[A] x=[b], x \geq 0
$$

as the set of all linear programs in the form minimize $c^{\top} x$ subject to $A x=b, x \geq 0$ with $A \in[A], b \in[b], c \in[c]$.

A solution $x \in \mathbb{R}^{n}$ is called weakly feasible/optimal, if it is feasible/optimal for some scenario of the interval linear program.

Interval Linear Programming

Definition

Given $[A] \in \mathbb{R}^{m \times n},[b] \in \mathbb{R}^{m},[c] \in \mathbb{R}^{n}$, we define an interval linear program (in the standard form)

$$
\text { minimize }[c]^{\top} x \text { subject to }[A] x=[b], x \geq 0
$$

as the set of all linear programs in the form minimize $c^{\top} x$ subject to $A x=b, x \geq 0$ with $A \in[A], b \in[b], c \in[c]$.

A solution $x \in \mathbb{R}^{n}$ is called weakly feasible/optimal, if it is feasible/optimal for some scenario of the interval linear program.

Dependency Problem

Let us consider a linear program with an interval equation...
$\max \quad x_{1}$
s. t. $[0,1] x_{1}-x_{2}=0$,

$$
x_{2} \leq 1,
$$

$$
x_{1}, x_{2} \geq 0
$$

Optimal set: $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \in[1, \infty)\right.$ and $\left.x_{2}=1\right\}$

Dependency Problem

...and split the equation into two inequalities.
$\max \quad x_{1}$
$\max x_{1}$

$$
x_{1}, x_{2} \geq 0
$$

s. t. $\quad \begin{array}{r}{[0,1] x_{1}-x_{2} \leq 0,} \\ {[0,1] x_{1}-x_{2}}\end{array} \geq 0, ~ \begin{array}{r}x_{2} \leq 1, \\ x_{1}, x_{2} \geq 0 .\end{array}$
s. t. $[0,1] x_{1}-x_{2}=0$,

$$
x_{2} \leq 1,
$$

Optimal set: $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \in[1, \infty)\right.$ and $\left.x_{2}=1\right\}$

Dependency Problem

$\max \quad x_{1}$
s. t. $[0,1] x_{1}-x_{2}=0$,

$$
\begin{array}{r}
x_{2} \leq 1 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

$\max \quad x_{1}$
s. t. $\quad \begin{aligned} 1 x_{1}-x_{2} & \leq 0, \\ 0 x_{1}-x_{2} & \geq 0, \\ x_{2} & \leq 1, \\ x_{1}, x_{2} & \geq 0 .\end{aligned}$

Optimal set: $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \in[1, \infty)\right.$ and $\left.x_{2}=1\right\}$ The solution $(0,0)$ is now optimal, too!

Interval Linear Program: An Example

$$
\begin{array}{ll}
\operatorname{maximize} & x_{2} \\
\text { subject to } & {[-1,1] x_{1}+x_{2} \leq 0} \\
x_{2} \leq 1
\end{array}
$$

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

Interval Linear Program: An Example

$$
\begin{array}{ll}
\operatorname{maximize} & x_{2} \\
\text { subject to } & {[-1,1] x_{1}+x_{2} \leq 0} \\
x_{2} \leq 1
\end{array}
$$

Optimal values: $\{0,1\}$

Weakly Feasible Solutions

Oettli-Prager (1964), Gerlach (1981)

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \text { solves }[A] x=[b] \Leftrightarrow\left|A_{c} x-b_{c}\right| \leq A_{\Delta}|x|+b_{\Delta} \\
& x \in \mathbb{R}^{n} \text { solves }[A] x \leq[b] \Leftrightarrow A_{c} x-A_{\Delta}|x| \leq \bar{b}
\end{aligned}
$$

The feasible solution set is not convex, in General.

But, it Becomes convex when restricted to an orthant.

Weakly Feasible Solutions

Oettli-Prager (1964), Gerlach (1981)

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \text { solves }[A] x=[b] \Leftrightarrow\left|A_{c} x-b_{c}\right| \leq A_{\Delta}|x|+b_{\Delta} \\
& x \in \mathbb{R}^{n} \text { solves }[A] x \leq[b] \Leftrightarrow A_{c} x-A_{\Delta}|x| \leq \bar{b}
\end{aligned}
$$

Orthant decomposition (ineq.):

Given a signature $s \in\{ \pm 1\}^{n}$, the corresponding orthant is the set

$$
\left\{x \in \mathbb{R}^{n}: \operatorname{diag}(s) x \geq 0\right\}
$$

Furthermore, we have $|x|=\operatorname{diag}(s) x$.

Weakly Feasible Solutions

Oettli-Prager (1964), Gerlach (1981)

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \text { solves }[A] x=[b] \Leftrightarrow\left|A_{c} x-b_{c}\right| \leq A_{\Delta}|x|+b_{\Delta} \\
& x \in \mathbb{R}^{n} \text { solves }[A] x \leq[b] \Leftrightarrow A_{c} x-A_{\Delta}|x| \leq \bar{b}
\end{aligned}
$$

Orthant decomposition (ineq.):
For $x \geq 0$ we have the feasible set

$$
A_{c} x-A_{\Delta} x \leq \bar{b}
$$

or $\underline{A x} \leq \bar{b}$.

Weakly Feasible Solutions

Oettli-Prager (1964), Gerlach (1981)

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \text { solves }[A] x=[b] \Leftrightarrow\left|A_{c} x-b_{c}\right| \leq A_{\Delta}|x|+b_{\Delta} \\
& x \in \mathbb{R}^{n} \text { solves }[A] x \leq[b] \Leftrightarrow A_{c} x-A_{\Delta}|x| \leq \bar{b}
\end{aligned}
$$

Orthant decomposition (ineq.):

In general, for $\operatorname{diag}(s) x \geq 0$ we have the feasible set

$$
A_{c} x-A_{\Delta} \operatorname{diag}(s) x \leq \bar{b}
$$

Weakly Feasible Solutions

Oettli-Prager (1964), Gerlach (1981)

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \text { solves }[A] x=[b] \Leftrightarrow\left|A_{c} x-b_{c}\right| \leq A_{\Delta}|x|+b_{\Delta} \\
& x \in \mathbb{R}^{n} \text { solves }[A] x \leq[b] \Leftrightarrow A_{c} x-A_{\Delta}|x| \leq \bar{b}
\end{aligned}
$$

Orthant decomposition (ineq.):
In general, for $\operatorname{diag}(s) x \geq 0$ we have the feasible set

$$
A_{c} x-A_{\Delta} \operatorname{diag}(s) x \leq \bar{b}
$$

Weakly Feasible Solutions

Oettli-Prager (1964), Gerlach (1981)

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \text { solves }[A] x=[b] \Leftrightarrow\left|A_{c} x-b_{c}\right| \leq A_{\Delta}|x|+b_{\Delta} \\
& x \in \mathbb{R}^{n} \text { solves }[A] x \leq[b] \Leftrightarrow A_{c} x-A_{\Delta}|x| \leq \bar{b}
\end{aligned}
$$

Orthant decomposition (ineq.):
In general, for $\operatorname{diag}(s) x \geq 0$ we have the feasible set

$$
A_{c} x-A_{\Delta} \operatorname{diag}(s) x \leq \bar{b}
$$

Weakly Optimal Solutions

Using duality of classical linear programming, we can obtain a parametric characterization of the optimal solution set

$$
\begin{aligned}
& A x=b, x \geq 0, \\
& A^{\top} y \leq c, \\
& c^{\top} x=b^{\top} y, \\
& A \in[A], b \in[b], c \in[c] .
\end{aligned}
$$

In general, the optimal solution set may be complicated (non-convex, disconnected). However, for some special cases, we can derive stronger characterizations.

Special Case: Fixed Matrix

For a fixed constraint matrix, we can describe the weakly optimal solution set by the non-linear system

$$
\begin{aligned}
& A x=b, x \geq 0, A^{\top} y \leq c, x^{\top}\left(c-A^{\top} y\right)=0 \\
& \underline{b} \leq b \leq \bar{b}, \underline{c} \leq c \leq \bar{c}
\end{aligned}
$$

Now, complementary slackness can be equivalently restated as $\forall i \in\{1, \ldots, n\}: x_{i}=0 \vee z_{i}=0$ with $z=c-A^{T} y$.

Theorem
The set of weakly optimal solutions of the interval LP
\square
subiect to $A x=[b], x \geq 0$
is a union of at most 2^{n} convex polyhedra.

Special Case: Fixed Matrix

For a fixed constraint matrix, we can describe the weakly optimal solution set by the non-linear system

$$
\begin{aligned}
& A x=b, x \geq 0, A^{\top} y \leq c, x^{\top}\left(c-A^{\top} y\right)=0, \\
& \underline{b} \leq b \leq \bar{b}, \underline{c} \leq c \leq \bar{c} .
\end{aligned}
$$

Now, complementary slackness can be equivalently restated as $\forall i \in\{1, \ldots, n\}: x_{i}=0 \vee z_{i}=0$ with $z=c-A^{\top} y$.

Theorem
The set of weakly optimal solutions of the interval LP
minimize
subject to $A x=[b], x \geq 0$
is a union of at most 2^{n} convex poithedira.

Special Case: Fixed Matrix

For a fixed constraint matrix, we can describe the weakly optimal solution set by the non-linear system

$$
\begin{aligned}
& A x=b, x \geq 0, A^{\top} y \leq c, x^{\top}\left(c-A^{\top} y\right)=0, \\
& \underline{b} \leq b \leq \bar{b}, \underline{c} \leq c \leq \bar{c} .
\end{aligned}
$$

Now, complementary slackness can be equivalently restated as $\forall i \in\{1, \ldots, n\}: x_{i}=0 \vee z_{i}=0$ with $z=c-A^{\top} y$.

Theorem

The set of weakly optimal solutions of the interval LP

$$
\begin{aligned}
\operatorname{minimize} & {[c]^{\top} x } \\
\text { subject to } & A x=[b], x \geq 0
\end{aligned}
$$

is a union of at most 2^{n} convex polyhedra.

Special Case: Basis Stability

Definition

Given a basis $B \subseteq\{1, \ldots, n\}$, an interval linear program

$$
\text { minimize }[c]^{\top} x \text { subject to }[A] x=[b], x \geq 0
$$

is B-stable, if B is an optimal basis for each scenario.

Theorem (Beeck, 1978; Hladík, 2014)
Under uniaue B-stabilitv, the set of all weakly optimal
solutions is

$$
\underline{A}_{B} x_{B} \leq \bar{b},-\bar{A}_{B} x_{B} \leq-\underline{b}, x_{B} \geq 0, x_{N}=0 .
$$

Special Case: Basis Stability

Definition

Given a basis $B \subseteq\{1, \ldots, n\}$, an interval linear program

$$
\text { minimize }[c]^{\top} x \text { subject to }[A] x=[b], x \geq 0
$$

is B -stable, if B is an optimal basis for each scenario.

Theorem (Beeck, 1978; Hladík, 2014)

Under unique B-stability, the set of all weakly optimal solutions is

$$
\underline{A}_{B} x_{B} \leq \bar{b},-\bar{A}_{B} x_{B} \leq-\underline{b}, x_{B} \geq 0, x_{N}=0 .
$$

Special Case: Basis Stability

Definition

Given a basis $B \subseteq\{1, \ldots, n\}$, an interval linear program

$$
\text { minimize }[c]^{\top} x \text { subject to }[A] x=[b], x \geq 0
$$

is B -stable, if B is an optimal basis for each scenario.

Theorem (Beeck, 1978; Hladík, 2014)

Under unique B-stability, the set of all weakly optimal solutions is

$$
\underline{A}_{B} x_{B} \leq \bar{b},-\bar{A}_{B} x_{B} \leq-\underline{b}, x_{B} \geq 0, x_{N}=0 .
$$

But, B-stability is NP-hard to test!

Complexity of Approximation

By convention, we say that a problem "maximize $f(x)$ subject to $x \in X^{\prime \prime}$ is NP-hard, if the corresponding decision problem "I $f(x) \geq r$ for some $x \in X$?" is NP-hard.

Theorem

Let $\mathcal{S}(A,[b], c)$ denote the optimal set of an interval LP

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=[b], x \geq 0
\end{aligned}
$$

Then, the problem

$$
\begin{aligned}
\text { optimize } & x_{i} \\
\text { subject to } & x \in \mathcal{S}(A,[b], c)
\end{aligned}
$$

for $i \in\{1, \ldots, n\}$ is NP-hard.

Interval Relaxation

To obtain a simpler approximation of the optimal set, we can relax the dependencies in the parametric description and consider the corresponding interval linear program

$$
[A] x=[b], x \geq 0,[A]^{\top} y \leq[c],[c]^{\top} x=[b]^{\top} y .
$$

Example:

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1} \\
\text { subject to } & x_{1}-x_{2}=[-1,1] \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

Decomposition Methods

Orthant decomposition:
For signatures $s \in\{ \pm 1\}^{m}$ solve
$c_{c}^{T} x-b_{c}^{T} y \leq c_{\Delta}^{\top} x+b_{\Delta}^{T} \operatorname{diag}(s) y, c_{c}^{\top} x-b_{c}^{\top} y \geq-c_{\Delta}^{\top} x-b_{\Delta}^{\top} \operatorname{diag}(s) y$,
$\underline{A} x \leq \bar{b},-\bar{A} x \leq-\underline{b}, x \geq 0$,
$A_{c}^{\top} y-A_{\Delta}^{\top} \operatorname{diag}(s) y \leq \bar{c}, \operatorname{diag}(s) y \geq 0$.

Decomposition by complementarity:
For an index set $I \subseteq\{1, \ldots, n\}$ solve

$$
\begin{aligned}
& {[A] x=[b],} \\
& x_{i}=0, \quad\left([A]^{T} y\right)_{i} \leq[C]_{i}, \quad \text { for } i \in I, \\
& x_{j} \geq 0, \quad\left([A]^{T} y\right)_{j}=[c]_{j}, \quad \text { for } j \notin I .
\end{aligned}
$$

Decomposition Methods

Orthant decomposition:

$$
[c]^{\top} x=[b]^{\top} y
$$

For signatures $s \in\{ \pm 1\}^{m}$ solve
$c_{c}^{\top} x-b_{c}^{\top} y \leq c_{\Delta}^{\top} x+b_{\Delta}^{\top} \operatorname{diag}(s) y, c_{c}^{\top} x-b_{c}^{\top} y \geq-c_{\Delta}^{\top} x-b_{\Delta}^{\top} \operatorname{diag}(s) y$,
$\underline{A} x \leq \bar{b},-\bar{A} x \leq-\underline{b}, x \geq 0$,
$A_{c}^{\top} y-A_{\Delta}^{\top} \operatorname{diag}(s) y \leq \bar{c}, \operatorname{diag}(s) y \geq 0$.

Decomposition by complementarity:
For an index set $I \subseteq\{1, \ldots, n\}$ solve

$$
\begin{aligned}
& {[A] x=[b],} \\
& x_{i}=0, \quad\left([A]^{T} y\right)_{i} \leq[C]_{i}, \quad \text { for } i \in I, \\
& x_{j} \geq 0, \quad\left([A]^{T} y\right)_{j}=[c]_{j}, \quad \text { for } j \notin I .
\end{aligned}
$$

Decomposition Methods

Orthant decomposition:

$$
[A] x=[b], x \geq 0
$$

For signatures $s \in\{ \pm 1\}^{m}$ solve
$c_{c}^{\top} x-b_{c}^{\top} y \leq c_{\Delta}^{\top} x+b_{\Delta}^{\top} \operatorname{diag}(s) y, c_{c}^{\top} x-b_{c}^{\top} y \geq-c_{\Delta}^{\top} x-b_{\Delta}^{\top} \operatorname{diag}(s) y$,
$A x \leq \bar{b},-\bar{A} x \leq-\underline{b}, x \geq 0$,
$A_{c}^{\top} y-A_{\Delta}^{\top} \operatorname{diag}(s) y \leq \bar{c}, \operatorname{diag}(s) y \geq 0$.

Decomposition by complementarity:
For an index set $I \subseteq\{1, \ldots, n\}$ solve

$$
\begin{aligned}
& {[A] x=[b],} \\
& x_{i}=0, \quad\left([A]^{T} y\right)_{i} \leq[C]_{i}, \quad \text { for } i \in I, \\
& x_{j} \geq 0, \quad\left([A]^{T} y\right)_{j}=[c]_{j}, \quad \text { for } j \notin I .
\end{aligned}
$$

Decomposition Methods

Orthant decomposition:

$$
[A]^{\top} y \leq[c]
$$

For signatures $s \in\{ \pm 1\}^{m}$ solve
$c_{c}^{\top} x-b_{c}^{\top} y \leq c_{\Delta}^{\top} x+b_{\Delta}^{\top} \operatorname{diag}(s) y, c_{c}^{\top} x-b_{c}^{\top} y \geq-c_{\Delta}^{\top} x-b_{\Delta}^{\top} \operatorname{diag}(s) y$, $\underline{A} x \leq \bar{b},-\bar{A} x \leq-\underline{b}, x \geq 0$,
$A_{c}^{\top} y-A_{\Delta}^{\top} \operatorname{diag}(s) y \leq \bar{c}, \operatorname{diag}(s) y \geq 0$.

Decomposition by complementarity:
For an index set $I \subseteq\{1, \ldots, n\}$ solve

$$
\begin{aligned}
& {[A] x=[b],} \\
& x_{i}=0, \quad\left([A]^{T} y\right)_{i} \leq[C]_{i}, \quad \text { for } i \in I, \\
& x_{j} \geq 0, \quad\left([A]^{T} y\right)_{j}=[c]_{j}, \quad \text { for } j \notin I .
\end{aligned}
$$

Decomposition Methods

Orthant decomposition:

For signatures $s \in\{ \pm 1\}^{m}$ solve
$c_{c}^{\top} x-b_{c}^{\top} y \leq c_{\Delta}^{\top} x+b_{\Delta}^{\top} \operatorname{diag}(s) y, c_{c}^{\top} x-b_{c}^{\top} y \geq-c_{\Delta}^{\top} x-b_{\Delta}^{\top} \operatorname{diag}(s) y$,
$\underline{A} x \leq \bar{b},-\bar{A} x \leq-\underline{b}, x \geq 0$,
$A_{c}^{T} y-A_{\Delta}^{T} \operatorname{diag}(s) y \leq \bar{c}, \operatorname{diag}(s) y \geq 0$.
Decomposition by complementarity:
For an index set $I \subseteq\{1, \ldots, n\}$ solve

$$
\begin{aligned}
& {[A] x=[b],} \\
& x_{i}=0, \quad\left([A]^{\top} y\right)_{i} \leq[c]_{i}, \quad \text { for } i \in I, \\
& x_{j} \geq 0, \quad\left([A]^{\top} y\right)_{j}=[c]_{j}, \quad \text { for } j \notin I .
\end{aligned}
$$

Linearization (Convexification) Methods

We have the interval relaxation to describe the optimal set:

$$
[A] x=[b], x \geq 0,[A]^{\top} y \leq[c],[c]^{\top} x=[b]^{\top} y .
$$

Combining it with the Oettli-Prager and Gerlach theorems, we obtain a system with absolute-value non-linearities.

Theorem (Beaumont, 1998; Htadil, 2012)
Let $\boldsymbol{y}=[y, \bar{y}] \in \mathbb{R} \mathbb{R}$ with $y<\bar{y}$. Then for every $y \in \boldsymbol{y}$ it holds that
where

Linearization (Convexification) Methods

We have the interval relaxation to describe the optimal set:

$$
[A] x=[b], x \geq 0,[A]^{\top} y \leq[c],[c]^{\top} x=[b]^{\top} y .
$$

Combining it with the Oettli-Prager and Gerlach theorems, we obtain a system with absolute-value non-linearities.

Theorem (Beaumont, 1998; Hladík, 2012)

Let $\boldsymbol{y}=[y, \bar{y}] \in \mathbb{I} \mathbb{R}$ with $\underline{y}<\bar{y}$. Then for every $y \in y$ it holds that
where

Linearization (Convexification) Methods

We have the interval relaxation to describe the optimal set:

$$
[A] x=[b], x \geq 0,[A]^{\top} y \leq[c],[c]^{\top} x=[b]^{\top} y .
$$

Combining it with the Oettli-Prager and Gerlach theorems, we obtain a system with absolute-value non-linearities.

Theorem (Beaumont, 1998; Hladík, 2012)
Let $\boldsymbol{y}=[y, \bar{y}] \in \mathbb{R}$ with $\boldsymbol{y}<\overline{\mathrm{y}}$. Then for every $\boldsymbol{y} \in \boldsymbol{y}$ it holds that

$$
|y| \leq \alpha y+\beta,
$$

where

$$
\alpha=\frac{|\bar{y}|-|\underline{y}|}{\bar{y}-\underline{y}}, \quad \beta=\frac{\bar{y}|\underline{y}|-\underline{y}|\bar{y}|}{\bar{y}-\underline{y}} .
$$

Branch-and-Bound Methods

Approximating the optimal set by an interval box (or a convex polyhedron) can lead to significant overestimation.

To obtain a tighter approximation, we can also describe the (non-convex) set by a subpaving, i.e. a union of interval boxes.

Branch-and-bound intervat methods have been successfully applied in solving non-linear constraints and linear parametric systems yielding a subpaving for the described feasible set.

Branch-and-Bound Methods

Approximating the optimal set by an interval box (or a convex polyhedron) can lead to significant overestimation.

To obtain a tighter approximation, we can also describe the (non-convex) set by a subpaving, i.e. a union of interval boxes.

Branch-and-bound interval methods have been successfully applied in solving non-linear constraints and linear parametric systems yielding a subpaving for the described feasible set.

Branch-and-Bound Methods

Approximating the optimal set by an interval box (or a convex polyhedron) can lead to significant overestimation.

To obtain a tighter approximation, we can also describe the (non-convex) set by a subpaving, i.e. a union of interval boxes.

Branch-and-bound interval methods have been successfully applied in solving non-linear constraints and linear parametric systems yielding a subpaving for the described feasible set.

Conclusion

- We consider the problem of characterizing the set of all weakly optimal solutions of an interval linear program.
- Several methods for approximating the optimal set have been proposed throughout the years, such as enclosures of the interval relaxation, orhant or complementarity decomposition or iterative linearization-based algorithms.

As using interval boxes or general convex polyhedra may lead to high overestimation of the set. applving a branch-and-bound method to describe the set by a union of boxes may be beneficial.

Conclusion

- We consider the problem of characterizing the set of all weakly optimal solutions of an interval linear program.
- Several methods for approximating the optimal set have been proposed throughout the years, such as enclosures of the interval relaxation, orhant or complementarity decomposition or iterative linearization-based algorithms.

$$
\begin{aligned}
& \text { As using interval boxes or general convex polyhedra may } \\
& \text { lead to high overestimation of the set, applying a branch- } \\
& \text { and-bound method to describe the set by a union of boxes } \\
& \text { may be beneficial. }
\end{aligned}
$$

Conclusion

- We consider the problem of characterizing the set of all weakly optimal solutions of an interval linear program.
- Several methods for approximating the optimal set have been proposed throughout the years, such as enclosures of the interval relaxation, orhant or complementarity decomposition or iterative linearization-based algorithms.
- As using interval boxes or general convex polyhedra may lead to high overestimation of the set, applying a branch-and-bound method to describe the set by a union of boxes may be beneficial.

References

M. Fiedler
J. Nedoma
J. Ramik
J. Rohn

Zimmermann
Linear Optimization Problems with Inexact Data
(2006). Authors: M. Fiedler, J. Nedoma, J. Ramík,
J. Rohn, K. Zimmermann

On the optimal solution set in interval linear programming (2019). E. Garajová, M. Hladík. Computational Optimization and Applications. also prove that testing boundedness is co-NP- hard for inequality-constraind problens
with free variables. Forthermore, we prove that computing the cxact interval hull of

 dexcription of the optimal set for problems with a fixed coefficicnt mitrix. Finally, we conduct computational experiments to compare our mechod with the existing orthant decomposition method. metbods - Topological propertics

1 Introduction

Throughout the years, linear programming has become a widely used mathematical tool for modelling and solving practical optimization problenss. Howereer, real-world

Slides will be available at http://elif.cz.

References

M. Fiedler
J. Nedoma
J. Ramik
J. Rohn

Zimmermann
Linear Optimization Problems with Inexact Data
(2006). Authors: M. Fiedler, J. Nedoma, J. Ramík,
J. Rohn, K. Zimmermann

On the optimal solution set in interval linear programming (2019). E. Garajová, M. Hladík. Computational Optimization and Applications.

> Thank you for your attention!

Slides will be available at http://elif.cz.

