On the Properties of Interval Linear Programs with a Fixed Coefficient Matrix

Elif Garajová¹ (with Milan Hladík¹ & Miroslav Rada²)

¹Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University

²Faculty of Informatics and Statistics, University of Economics, Prague

International Conference on Optimization and Decision Science (ODS2017)

minimize $c^T x$ subject to $Ax \leq b$

Interval Linear Programming

Formally...

• An interval linear program is a family of linear programs:

minimize $c^T x$ subject to $Ax \leq b$ with $A \in A, b \in b, c \in c$,

- x^* is (weakly) feasible, if $Ax^* \leq b$ for some $A \in A, b \in b$,
- x^* is (weakly) optimal, if it is an optimal solution of a linear program min $c^T x : Ax \le b$ with $A \in A, b \in b, c \in c$.

max
$$x_1$$

s. t. $[0,1]x_1 - x_2 = 0,$
 $x_2 \le 1,$
 $x_1, x_2 \ge 0.$

Optimal set: $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 \in [1, \infty) \text{ and } x_2 = 1\}$

Dependency Problem

Optimal set: $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 \in [1, \infty) \text{ and } x_2 = 1\}$

Dependency Problem

Optimal set: $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 \in [1, \infty) \text{ and } x_2 = 1\}$ The solution (0, 0) is now optimal, too!

Feasibility

- Are all/some scenarios feasible?
- Are there any (weakly) feasible solutions?

(Un)boundedness

• Do all/some scenarios have an unbounded objective function?

Optimality

- Do all/some scenarios possess an optimal solution?
- Are there any (weakly) optimal solutions?

	$\min \mathbf{c}^{T} \mathbf{x}$ $\mathbf{A} \mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$	$\min \mathbf{c}^{T} \mathbf{x} \\ \mathbf{A} \mathbf{x} \le \mathbf{b}$	$\min \mathbf{c}^{T} \mathbf{x}$ $\mathbf{A} \mathbf{x} \le \mathbf{b}, \mathbf{x} \ge 0$
strong feasibility	co-NP-hard	polynomial	polynomial
weak feasibility	polynomial	NP-hard	polynomial
strong unboundedness	co-NP-hard	polynomial	polynomial
weak unboundedness	?	NP-hard	polynomial
strong optimality	co-NP-hard	co-NP-hard	polynomial
weak optimality	NP-hard	NP-hard	2

Computational Complexity

Let's fix the matrix A					
	min c ^T x	min $c^T x$	min $c^T x$		
	$Ax = b, x \ge 0$	$Ax \leq b$	$Ax \leq b, x \geq 0$		
strong feasibility	?	polynomial	polynomial		
weak feasibility	polynomial	?	polynomial		
strong unboundedness	?	polynomial	polynomial		
weak unboundedness	?	?	polynomial		
strong optimality	?	?	polynomial		
weak optimality	?	?	?		

In general, testing weak feasibility is NP-hard for type $Ax \le b$. Special case with a fixed matrix is polynomial:

1
$$\underline{b} \le Ax \le \overline{b}, x \ge 0$$
,
2 $Ax \le \overline{b}$,
3 $Ax \le \overline{b}, x \ge 0$.

Testing weak feasibility is NP-hard for interval systems in the form $Ax \le 0$, $\boldsymbol{b}^T x < 0$.

Proof idea:

$$e = (1, \ldots, 1)^T$$

- 1. Checking feasibility of the system $|Ax| \le e, e^T |x| > 1$ is an NP-hard problem. Fact!
- 2. This problem is equivalent to checking feasibility of the system $|Ax| \le ey, y \ge 0, e^T |x| > y$.
- 3. The inequality $e^{T}|x| y > 0$ is feasible if and only if the interval inequality $[-e, e]^{T}x + y < 0$ is weakly feasible. (By the Gerlach Theorem)

$$|Ax| \le e, \ e^{T}|x| > 1 \text{ is feasible}$$
(1)
$$(1)$$
$$(1)$$
$$(1)$$
$$(2)$$
$$Ax| \le ey, \ y \ge 0, \ e^{T}|x| > y \text{ is feasible}$$
(2)

- If x is a feasible solution of (1), then the pair (x, 1) solves system (2).
- Let (x, y) be a solution of (2). If y > 0, then $\frac{x}{y}$ solves (1).
- Otherwise, we have Ax = 0, $e^{T}|x| > 0$ and $\frac{x}{e^{T}|x|-\varepsilon}$ for some ε with $0 < \varepsilon < e^{T}|x|$ solves (1).

Testing strong feasibility is co-NP-hard for interval linear systems of type $Ax = b, x \ge 0$.

Testing strong feasibility is co-NP-hard for interval linear systems of type $Ax = b, x \ge 0$.

For equation-constrained programs, we need to check all extremal scenarios:

1 $Ax = b_c + \operatorname{diag}(p)b_\Delta, x \ge 0$ for each $p \in \{\pm 1\}^m$.

For inequalities, there is a worst-case scenario:

2
$$Ax \le \underline{b}$$
,
3 $Ax < b, x > 0$

Testing weak unboundedness is NP-hard for ILPs of type min $c^T x : Ax \le b$.

Why?

min $c^T x$: $Ax \le b$ is weakly unbounded $x \le \overline{b}$, $Ad \le 0$, $c^T d < 0$ is weakly feasible

Testing weak unboundedness is NP-hard for ILPs of type min $c^T x : Ax \le b$.

Why?

min $c^T x : Ax \le b$ is weakly unbounded $\begin{array}{c} & & \\ & & \\ & & \\ Ax \le \overline{b}, \ Ad \le 0, \ c^T d < 0 \end{array}$ is weakly feasible NP-hard by the main theorem We need to test weak feasibility of the original problem and the unboundedness constraints:

1)
$$\underline{b} \leq Ax \leq \overline{b}, x \geq 0, Ad = 0, d \geq 0, \underline{c}^{T}d \leq -1, d \geq 0$$

- ② $Ax \le \overline{b}, Ad \le 0, (c_c^T c_\Delta^T \operatorname{diag}(p))d \le -1$ for some $p \in \{\pm 1\}^n$,
- **3** $Ax \leq \overline{b}, x \geq 0, Ad \leq 0, d \geq 0, \underline{c}^{\mathsf{T}}d \leq -1.$

Testing strong unboundedness is co-NP-hard for ILPs of type min $c^T x$: $Ax = b, x \ge 0$.

Why?

maximize z subject to
$$Ax = b, x \ge 0, z \ge 0$$

is strongly unbounded
 $Ax = b, x \ge 0$ is strongly feasible
Proved to be co-NP-hard

We want to test unboundedness in the worst-case scenario:

- **1** minimize $\overline{c}^T x$ subject to $Ax = b_c + \text{diag}(p)b_\Delta$, $x \ge 0$ for each $p \in {\pm 1}^m$,
- 2 minimize $\overline{c}^T x^1 \underline{c}^T x^2$ subject to $A(x^1 x^2) \le \underline{b}, x^1 \ge 0, x^2 \ge 0,$
- 3 minimize $\overline{c}^T x$ subject to $Ax \leq \underline{b}, x \geq 0$.

For testing weak optimality, we only need to test weak feasibility of the primal and the dual problem:

1
$$\underline{b} \le Ax \le \overline{b}, x \ge 0, A^T y \le \overline{c},$$

2 $Ax \le \overline{b}, \underline{c} \le A^T y \le \overline{c}, y \le 0,$
3 $Ax \le \overline{b}, x \ge 0, A^T y \le \overline{c}, y \le 0.$

Note: This is not sufficient in the general case!

Testing strong optimality is co-NP-hard for ILPs of types min $c^T x$: $Ax = b, x \ge 0$ and min $c^T x$: $Ax \le b$.

Why?

minimize $0^T x$ subject to Ax = b, $x \ge 0$ is strongly optimal $Ax = b, x \ge 0 \text{ is strongly feasible}$ Proved to be co-NP-hard We can employ duality in linear programming and test strong feasibility of the primal and the dual problem:

	min $c^T x$	min c ^T x	min $c^T x$
	$Ax = b, x \ge 0$	$Ax \leq b$	$Ax \leq b, x \geq 0$
strong feasibility	co-NP-hard	polynomial	polynomial
weak feasibility	polynomial	polynomial	polynomial
strong unboundedness	co-NP-hard	polynomial	polynomial
weak unboundedness	polynomial	NP-hard	polynomial
strong optimality	co-NP-hard	co-NP-hard	polynomial
weak optimality	polynomial	polynomial	polynomial

	min $c^T x$	min c ^T x	min $c^T x$
	$Ax = b, x \ge 0$	$Ax \leq b$	$Ax \leq b, x \geq 0$
strong feasibility	co-NP-hard	polynomial	polynomial
weak feasibility	polynomial	polynomial	polynomial
strong unboundedness	co-NP-hard	polynomial	polynomial
weak unboundedness	polynomial	NP-hard	polynomial
strong optimality	co-NP-hard	co-NP-hard	polynomial
weak optimality	polynomial	polynomial	polynomial

Thanks for your attention!