On the Properties of Interval Linear Programs with a Fixed Coefficient Matrix

Elif Garajová ${ }^{1}$ (with Milan Hladík ${ }^{1}$ \& Miroslav Rada²)
${ }^{1}$ Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University
${ }^{2}$ Faculty of Informatics and Statistics, University of Economics, Prague

Interval Linear Programming

minimize $c^{\top} x$ subject to $A x \leq b$

Interval Linear Programming

minimize $c^{\top} x$ subject to $A x \leq b$

Feasible and Optimal Solutions

Formally...

- An interval linear program is a family of linear programs:
minimize $c^{T} x$ subject to $A x \leq b$ with $A \in A, b \in b, c \in c$,
- x^{*} is (weakly) feasible, if $A x^{*} \leq b$ for some $A \in A, b \in b$,
- x^{*} is (weakly) optimal, if it is an optimal solution of a linear program min $c^{\top} x: A x \leq b$ with $A \in A, b \in b, c \in c$.

Dependency Problem

$\max \quad x_{1}$
s. t. $[0,1] x_{1}-x_{2}=0$,

$$
\begin{array}{r}
x_{2} \leq 1 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Optimal set: $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \in[1, \infty)\right.$ and $\left.x_{2}=1\right\}$

Dependency Problem

$\max \quad x_{1}$
s. t. $[0,1] x_{1}-x_{2}=0$, $x_{2} \leq 1$, $x_{1}, x_{2} \geq 0$.
$\max \quad x_{1}$
s. t. $[0,1] x_{1}-x_{2} \leq 0$,
$[0,1] x_{1}-x_{2} \geq 0$, $x_{2} \leq 1$,
$x_{1}, x_{2} \geq 0$.

Optimal set: $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \in[1, \infty)\right.$ and $\left.x_{2}=1\right\}$

Dependency Problem

$\max \quad x_{1}$
s. t. $[0,1] x_{1}-x_{2}=0$, $x_{2} \leq 1$, $x_{1}, x_{2} \geq 0$.

$$
\begin{array}{ll}
\max & x_{1} \\
\text { s.t. } & 1 x_{1}-x_{2} \leq 0 \\
& 0 x_{1}-x_{2} \geq 0 \\
& x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Optimal set: $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \in[1, \infty)\right.$ and $\left.x_{2}=1\right\}$ The solution $(0,0)$ is now optimal, too!

Orthant Decomposition

Oettli-Prager (1964), Gerlach (1981)

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \text { solves } A x=b \Leftrightarrow\left|A_{c} x-b_{c}\right| \leq A_{\Delta}|x|+b_{\Delta} \\
& \left.x \in \mathbb{R}^{n} \text { solves } A x \leq b \Leftrightarrow A_{c} x-A_{\Delta}|x| \leq \bar{b} \quad a_{\Delta}\right]_{\underline{a}}^{\bar{a}} \\
& a_{c}
\end{aligned}
$$

Main Questions

Feasibility

- Are all/some scenarios feasible?
- Are there any (weakly) feasible solutions?
(Un)boundedness
- Do all/some scenarios have an unbounded objective function?

Optimality

- Do all/some scenarios possess an optimal solution?
- Are there any (weakly) optimal solutions?

Computational Complexity

	min $c^{T} x$	$\min c^{T} x$	$\min c^{T} x$
	$A x=b, x \geq 0$	$A x \leq b$	$A x \leq b, x \geq 0$
strong feasibility	co-NP-hard	polynomial	polynomial
weak feasibility	polynomial	NP-hard	polynomial
strong unboundedness	co-NP-hard	polynomial	polynomial
weak unboundedness	$?$	NP-hard	polynomial
strong optimality	co-NP-hard	co-NP-hard	polynomial
weak optimality	NP-hard	NP-hard	$?$

Computational Complexity

Weak Feasibility

Oettli-Prager (1964), Gerlach (1981)

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \text { solves } A x=b \Leftrightarrow\left|A_{c} x-b_{c}\right| \leq A_{\Delta}|x|+b_{\Delta} \\
& x \in \mathbb{R}^{n} \text { solves } A x \leq b \Leftrightarrow A_{c} x-A_{\Delta}|x| \leq \bar{b}
\end{aligned}
$$

In general, testing weak feasibility is NP-hard for type $A x \leq b$. Special case with a fixed matrix is polynomial:
(1) $\underline{b} \leq A x \leq \bar{b}, x \geq 0$,
(2) $A x \leq \bar{b}$
(3) $A x \leq \bar{b}, x \geq 0$.

Main Result

Theorem

Testing weak feasibility is NP-hard for interval systems in the form $A x \leq 0, b^{\top} x<0$.

Proof idea:

$$
e=(1, \ldots, 1)^{\top}
$$

1. Checking feasibility of the system $|A x| \leq e, e^{\top}|x|>1$ is an NP-hard problem. Fact!
2. This problem is equivalent to checking feasibility of the system $|A x| \leq e y, y \geq 0, e^{T}|x|>y$.
3. The inequality $e^{\top}|x|-y>0$ is feasible if and only if the interval inequality $[-e, e]^{\top} x+y<0$ is weakly feasible. (By the Gerlach Theorem)

Main Result (cont.)

$$
\begin{gather*}
|A x| \leq e, e^{T}|x|>1 \text { is feasible } \tag{1}\\
\hat{\Downarrow} \\
|A x| \leq e y, y \geq 0, e^{T}|x|>y \text { is feasible } \tag{2}
\end{gather*}
$$

- If x is a feasible solution of (1), then the pair $(x, 1)$ solves system (2).
- Let (x, y) be a solution of (2). If $y>0$, then $\frac{x}{y}$ solves (1).
- Otherwise, we have $A x=0, e^{\top}|x|>0$ and $\frac{x}{e^{T}|x|-\varepsilon}$ for some ε with $0<\varepsilon<e^{\top}|x|$ solves (1).

Strong Feasibility

Theorem
Testing strong feasibility is co-NP-hard for interval linear systems of type $A x=b, x \geq 0$.

Why? $\quad A x=b, x \geq 0$ is weakly infeasible ॥
$A^{T} y \geq 0, b^{T} y<0$ is weakly feasible

Strong Feasibility

Theorem
Testing strong feasibility is co-NP-hard for interval linear systems of type $A x=b, x \geq 0$.

Why? $\quad A x=b, x \geq 0$ is weakly infeasible \Uparrow Farkas' Lemma $A^{T} y \geq 0, b^{T} y<0$ is weakly feasible

Strong Feasibility: Testing

For equation-constrained programs, we need to check all extremal scenarios:
(1) $A x=b_{c}+\operatorname{diag}(p) b_{\Delta}, x \geq 0$ for each $p \in\{ \pm 1\}^{m}$.

For inequalities, there is a worst-case scenario:
(2) $A x \leq \underline{b}$,
(3) $A x \leq \underline{b}, x \geq 0$.

Weak Unboundedness

Theorem

Testing weak unboundedness is NP-hard for ILPs of type $\min c^{T} x: A x \leq b$.

Why?

$$
\min c^{T} x: A x \leq b \text { is weakly unbounded }
$$

I

$$
A x \leq \bar{b}, A d \leq 0, c^{\top} d<0 \text { is weakly feasible }
$$

Weak Unboundedness

Theorem

Testing weak unboundedness is NP-hard for ILPs of type $\min c^{\top} x: A x \leq b$.

Why?
$\min c^{\top} x: A x \leq b$ is weakly unbounded
$A x \leq \bar{b}, A d \leq 0, c^{T} d<0$ is weakly feasible
NP-hard By the main theorem

Weak Unboundedness: Testing

We need to test weak feasibility of the original problem and the unboundedness constraints:
(1) $\underline{b} \leq A x \leq \bar{b}, x \geq 0, A d=0, d \geq 0, \underline{c}^{\top} d \leq-1$,
(2) $A x \leq \bar{b}, A d \leq 0,\left(c_{c}^{\top}-c_{\Delta}^{\top} \operatorname{diag}(p)\right) d \leq-1$ for some $p \in\{ \pm 1\}^{n}$,
(3) $A x \leq \bar{b}, x \geq 0, A d \leq 0, d \geq 0, \underline{c}^{\top} d \leq-1$.

Strong Unboundedness

Theorem

Testing strong unboundedness is co-NP-hard for ILPs of type $\min c^{\top} x: A x=b, x \geq 0$.

Why?
maximize z subject to $A x=b, x \geq 0, z \geq 0$ is strongly unbounded
§
$A x=b, x \geq 0$ is strongly feasible Proved to Be co-NP-hard

Strong Unboundedness: Testing

We want to test unboundedness in the worst-case scenario:
(1) minimize $\bar{c}^{\top} x$ subject to $A x=b_{c}+\operatorname{diag}(p) b_{\Delta}, x \geq 0$ for each $p \in\{ \pm 1\}^{m}$,
(2) minimize $\bar{c}^{\top} x^{1}-\underline{c}^{\top} x^{2}$ subject to $A\left(x^{1}-x^{2}\right) \leq \underline{b}, x^{1} \geq 0$, $x^{2} \geq 0$,
(3) minimize $\bar{c}^{\top} x$ subject to $A x \leq \underline{b}, x \geq 0$.

Weak Optimality

For testing weak optimality, we only need to test weak feasibility of the primal and the dual problem:
(1) $\underline{b} \leq A x \leq \bar{b}, x \geq 0, A^{\top} y \leq \bar{c}$,
(2) $A x \leq \bar{b}, \underline{c} \leq A^{\top} y \leq \bar{c}, y \leq 0$,
(3) $A x \leq \bar{b}, x \geq 0, A^{\top} y \leq \bar{c}, y \leq 0$ 。

Note: This is not sufficient in the General case!

Strong Optimality

Theorem

Testing strong optimality is co-NP-hard for ILPs of types $\min c^{\top} x: A x=b, x \geq 0$ and $\min c^{\top} x: A x \leq b$.

Why?
minimize $0^{T} x$ subject to $A x=b, x \geq 0$ is strongly optimal I
$A x=b, x \geq 0$ is strongly feasible

Proved to Be co-NP-hard

Strong Optimality: Testing

We can employ duality in linear programming and test strong feasibility of the primal and the dual problem:
(1) $A x=b_{c}+\operatorname{diag}(p) b_{\Delta}, x \geq 0, A^{\top} y \leq \underline{c}$ for each $p \in\{ \pm 1\}^{m}$,
(2) $A x \leq \underline{b}, A^{T} y=c_{c}+\operatorname{diag}(p) c_{\Delta}, y \leq 0$ for each $p \in\{ \pm 1\}^{n}$,
(3) $A x \leq \underline{b}, x \geq 0, A^{\top} y \leq \underline{c}, y \leq 0$.

Complexity Results

	$\min c^{\top} x$	$\min c^{\top} x$	$\min c^{\top} x$
	$A x=b, x \geq 0$	$A x \leq b$	$A x \leq b, x \geq 0$
strong feasibility	co-NP-hard	polynomial	polynomial
weak feasibility	polynomial	polynomial	polynomial
strong unboundedness	co-NP-hard	polynomial	polynomial
weak unboundedness	polynomial	NP-hard	polynomial
strong optimality	co-NP-hard	co-NP-hard	polynomial
weak optimality	polynomial	polynomial	polynomial

Complexity Results

	$\min c^{\top} x$	$\min c^{\top} x$	$\min c^{\top} x$
	$A x=b, x \geq 0$	$A x \leq b$	$A x \leq b, x \geq 0$
strong feasibility	co-NP-hard	polynomial	polynomial
weak feasibility	polynomial	polynomial	polynomial
strong unboundedness	co-NP-hard	polynomial	polynomial
weak unboundedness	polynomial	NP-hard	polynomial
strong optimality	co-NP-hard	co-NP-hard	polynomial
weak optimality	polynomial	polynomial	polynomial

Thanks for your attention!

