Approximating the Optimal Value Range in Interval Linear Programming

Elif Garajová (with Milan Hladík) Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University

11th International Conference on Parametric Optimization and Related Topics (ParaoptXI)

Consider a linear programming problem...

minimize $c^T x$ subject to $Ax \leq b$

maximize
$$x_2$$

subject to $[-1, 1]x_1 + x_2 \le 0$
 $x_2 \le 1$

- What are the possible feasible solutions?
- Which solutions are optimal for some scenario?
- What is the set/range of all optimal values?

Interval Linear Programming: Example

Optimal value of an LP: $f(A, b, c) = \inf\{c^T x : Ax \le b\}$

- $f(A, b, c) = -\infty$ if it is unbounded,
- $f(A, b, c) = \infty$ if it is infeasible,
- $f(A, b, c) = c^T x^*$ if there is an optimal solution x^* .

Lower bound of the optimal value range:

$$f(\mathbf{A}, \mathbf{b}, \mathbf{c}) = \inf \left\{ f(\mathbf{A}, b, c) : \mathbf{A} \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c} \right\}$$

Upper bound of the optimal value range:

$$\overline{f}(\mathbf{A}, \mathbf{b}, \mathbf{c}) = \sup \{f(\mathbf{A}, b, c) : \mathbf{A} \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}\}$$

	min c ^T x	min c ^T x	min $c^T x$
	$Ax = b, x \ge 0$	$Ax \leq b$	$Ax \leq b, x \geq 0$
Best opt. value <u>f</u>	polynomial	NP-hard	polynomial
Worst opt. value \bar{f}	NP-hard	polynomial	polynomial

Dependency problem:

max x subject to $x = [0, 1] \rightarrow \max x$ subject to $x \le [0, 1], x \ge [0, 1]$

The optimal value range changes from [0,1] to $[0,\infty)$, because the multiple occurrences of a coefficient are independent!

• Best optimal value \underline{f} of min $\mathbf{c}^T x : \mathbf{A} x \leq \mathbf{b}, x \geq 0$ Non-negative variables \Rightarrow objective vector \underline{c} Largest feasible set: $\underline{A} x \leq \overline{b}, x \geq 0$

- Best optimal value \underline{f} of min $c^T x : Ax \le b, x \ge 0$ Non-negative variables \Rightarrow objective vector \underline{c} Largest feasible set: $\underline{Ax} \le \overline{b}, x \ge 0$
- Worst optimal value \overline{f} of min $c^T x : Ax \le b, x \ge 0$ Non-negative variables \Rightarrow objective vector \overline{c} Smallest feasible set: $\overline{Ax} \le \underline{b}, x \ge 0$

- Best optimal value <u>f</u> of min $c^T x : Ax \le b, x \ge 0$ Non-negative variables \Rightarrow objective vector <u>c</u> Largest feasible set: <u>Ax</u> $\le \overline{b}, x \ge 0$
- Worst optimal value \overline{f} of min $\mathbf{c}^T x : \mathbf{A} x \leq \mathbf{b}, x \geq 0$ Non-negative variables \Rightarrow objective vector \overline{c} Smallest feasible set: $\overline{A} x \leq \underline{b}, x \geq 0$
- Best optimal value \underline{f} of min $c^T x : Ax = b, x \ge 0$ Non-negative variables \Rightarrow objective vector \underline{c} Oettli-Prager: $\underline{Ax} \le \overline{b}, \overline{Ax} \ge \underline{b}, x \ge 0$

- Best optimal value \underline{f} of min $\mathbf{c}^T x : \mathbf{A} x \leq \mathbf{b}, x \geq 0$ Non-negative variables \Rightarrow objective vector \underline{c} Largest feasible set: $\underline{A} x \leq \overline{b}, x \geq 0$
- Worst optimal value \overline{f} of min $\mathbf{c}^T x : \mathbf{A} x \leq \mathbf{b}, x \geq 0$ Non-negative variables \Rightarrow objective vector \overline{c} Smallest feasible set: $\overline{A} x \leq \underline{b}, x \geq 0$
- Best optimal value \underline{f} of min $c^T x : Ax = b, x \ge 0$ Non-negative variables \Rightarrow objective vector \underline{c} Oettli-Prager: $\underline{Ax} \le \overline{b}, \overline{Ax} \ge \underline{b}, x \ge 0$
- Worst optimal value \overline{f} of min $c^T x : Ax \le b$ \rightarrow Dual program: max $b^T y : A^T y = c, y \le 0$

The Hard Problems

- Worst optimal value \overline{f} of min $c^T x : Ax = b, x \ge 0$ \rightarrow by duality
- Best optimal value f of min $c^T x : Ax \le b$
 - The Gerlach Theorem: $A_c x A_\Delta |x| \le \overline{b}$
 - Orthant decomposition: Solve an LP in each orthant and choose the overall minimum (or $-\infty$)

 \Rightarrow For each $s \in \{\pm 1\}^n$ solve:

For each $s \in \{\pm 1\}^n$ solve:

minimize
$$(c_c - D_s c_\Delta)^T x$$

subject to $(A_c - A_\Delta D_s) x \le \overline{b}$
 $D_s x \ge 0$ $\Big\}$ 2ⁿ linear programs

- If k of the variables are non-negative or non-positive, fix the corresponding signs in $s \Rightarrow 2^{n-k}$ linear programs
- If uncertainty only affects *l* columns, use vectors $s \in \{\pm 1\}^l$ for the corresponding *l* variables $\Rightarrow 2^l$ linear programs

For each $s \in \{\pm 1\}^n$ solve:

minimize
$$(c_c - D_s c_\Delta)^T x$$

subject to $(A_c - A_\Delta D_s) x \le \overline{b}$
 $D_s x \ge 0$ $\Big\}$ 2ⁿ linear programs

- If k of the variables are non-negative or non-positive, fix the corresponding signs in $s \Rightarrow 2^{n-k}$ linear programs
- If uncertainty only affects *l* columns, use vectors $s \in \{\pm 1\}^l$ for the corresponding *l* variables $\Rightarrow 2^l$ linear programs
- What if the coefficient matrix **A** is fixed?

Consider the matrix norm

$$||A||_{\infty,1} = \max_{||x||_{\infty}=1} ||Ax||_{1},$$

where $||x||_{\infty} = \max_{i} |x_{i}|$ and $||x||_{1} = \sum_{i} |x_{i}|$.

Theorem (Rohn, 1996)

Deciding whether $||A||_{\infty,1} \ge 1$ is NP-hard on the class of positive definite rational matrices.

Theorem (Rohn, 1997)

Deciding whether $\overline{f}(A, b, c) \ge 1$ holds is NP-hard for problems of type min $c^T x : Ax = b, x \ge 0$.

Proof idea:

minimize
$$e^T x_1 + e^T x_2$$

subject to $A^{-1}x_1 - A^{-1}x_2 = [-e, e]$
 $x_1, x_2 \ge 0$

$$\rightarrow \bar{f} = \|A\|_{\infty,1}$$

Feasibility, Optimality and Boundedness

- Weak infeasibility: Is there a scenario with no feasible solutions? $\Rightarrow \bar{f} = \infty$
- Strong optimality: Does every scenario have an optimal solution? $\Rightarrow f, \bar{f}$ are finite
- Weak unboundedness: Is there a scenario with an unbounded objective? $\Rightarrow f = -\infty$

Theorem (Rohn, 1981; Rohn & Kreslová, 1994)

- The system $Ax = b, x \ge 0$ is strongly feasible iff for each $s \in {\pm 1}^m$ the system $(A_c D_s A_\Delta)x = b_c + D_s b_\Delta, x \ge 0$ is feasible.
- The system $Ax \le b$ is strongly feasible if and only if the system $\overline{A}x_1 \underline{A}x_2 \le \underline{b}, x_1 \ge 0, x_2 \ge 0$ is feasible.

Theorem (Rohn, 2000)

- For every $\delta > 0$, computing a rational number that is δ -close to $||A||_{\infty,1}$ is NP-hard.
- If $P \neq NP$, then there is no polynomial-time algorithm, which for each non-negative positive definite rational matrix $A \in \mathbb{R}^{n \times n}$ computes a rational approximation r to $\|A\|_{\infty,1}$ satisfying

$$\left|\frac{r - \|A\|_{\infty,1}}{\|A\|_{\infty,1}}\right| \le \frac{1}{4n^2}.$$

Theorem (Rohn, 2000)

- For every $\delta > 0$, computing a rational number that is δ -close to $||A||_{\infty,1}$ is NP-hard.
- If $P \neq NP$, then there is no polynomial-time algorithm, which for each non-negative positive definite rational matrix $A \in \mathbb{R}^{n \times n}$ computes a rational approximation r to $\|A\|_{\infty,1}$ satisfying

$$\frac{r - \|A\|_{\infty,1}}{\|A\|_{\infty,1}} \le \frac{1}{4n^2}.$$

 \sim Also holds for the Best optimal value!

Goal: Find an upper bound \underline{f}^U and a lower bound \underline{f}^L on the best optimal value f(A, b, c) of the problem

minimize $c^T x$ subject to $Ax \leq b$.

- Upper bound: optimal value of any scenario in (A, b, c)
- Lower bound: optimal value of a relaxed problem

 $\min_{A \in \mathbf{A}, c \in \mathbf{c}} \left\{ \min_{x \in \mathbb{R}^n} c^T x \text{ subject to } Ax \leq \overline{b} \right\}$

$\min c^{\mathsf{T}} x \text{ subject to } A x \leq \overline{b}, \ \underline{c} \leq c \leq \overline{c}, \ \underline{A} \leq A \leq \overline{A}$

McCormick Envelopes

$$f(x,y) = xy, \ \underline{x} \le x \le \overline{x}, \ \underline{y} \le y \le \overline{y}$$

$$w \ge \underline{x}y + x\underline{y} - \underline{x}\underline{y}, \quad w \ge \overline{x}y + x\overline{y} - \overline{x}\overline{y}, w \le \overline{x}y + x\underline{y} - \overline{x}\underline{y}, \quad w \le x\overline{y} + \underline{x}y - \underline{x}\overline{y}$$

Lower Bound: McCormick Envelopes Relaxation

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{n} w_{i} \\ \text{subject to} & Ax \leq \overline{b} \\ & \underline{c} \leq c \leq \overline{c} \\ & w_{i} \geq \underline{c}_{i}x_{i} + c_{i}\underline{x}_{i} - \underline{c}_{i}x_{i}, \quad i \in \{1, \dots, n\} \\ & w_{i} \geq \overline{c}_{i}x_{i} + c_{i}\overline{x}_{i} - \overline{c}_{i}\overline{x}_{i}, \quad i \in \{1, \dots, n\} \\ & w_{i} \leq \overline{c}_{i}x_{i} + c_{i}\underline{x}_{i} - \overline{c}_{i}\overline{x}_{i}, \quad i \in \{1, \dots, n\} \\ & w_{i} \leq c_{i}\overline{x}_{i} + \underline{c}_{i}x_{i} - \underline{c}_{i}\overline{x}_{i}, \quad i \in \{1, \dots, n\} \\ & w_{i} \leq c_{i}\overline{x}_{i} + \underline{c}_{i}x_{i} - \underline{c}_{i}\overline{x}_{i}, \quad i \in \{1, \dots, n\} \\ \end{array}$$

+ constraints for A

Best case optimal value in interval linear programming

Algorithm 3 Upper bound f^U on f

1: compute $\underline{f}^* := f(A^c, b, c^c)$ and let x^* be the corresponding optimal solution 2: repeat 3: put $\underline{f}^U := \underline{f}^*$ 4: put $s := \operatorname{sgn}(x^*)$ 5: compute the optimal value \underline{f}^* and the optimal solution x^* to (8) 6: until $\underline{f}^s \ge \underline{f}^U$ or $s = \operatorname{sgn}(x^*)$ 7: return $\underline{f}^U := \min\{\underline{f}^U, \underline{f}^*\}$

and the initial bound $\underline{f}^U := f(A^c, b, c^c)$. Then, we run an iterative local improvement method to find a scenario with as small as possible optimal value.

Put $s := sgn(x^*)$. The best case optimal value for the feasible set restricted to the orthant $D_s x \ge 0$, is calculated by the linear program (6). This motivates us to choose the following scenario of (3) as a promising one for achieving the lowest optimal value.

$$\underline{f^{s}} := \min(c^{c} - D_{s} c^{\Delta})^{T} x$$

subject to $(A^{c} - A^{\Delta} D_{s})x \le b.$ (8)

Example (Hladík, 2014) minimize $[2,3]x_1 + [6,7]x_2$ $\begin{pmatrix} -[4,5] & -[2,3] \\ [4,5] & -[1,2] \\ [2,3] & [5,6] \end{pmatrix} x \le \begin{pmatrix} -[11,12] \\ [26,28] \\ [43,45] \end{pmatrix}$

Worst optimal value:

maximize
$$\underline{b}^T y$$
 subject to $\overline{A}^T y \leq \overline{c}, \underline{A}^T y \geq \underline{c}, y \leq 0$
 $\rightarrow \overline{f} = 1.8261$

Best optimal value:

- Upper bound:
 - Solve the scenario with A_c, b

 c_c: x* = (4.8056, -4.2500), f(x*) = -15.6111.
 - Output: Modify the coefficients using s = (1, -1) and solve the corresponding LP: x^s = (5.1538, -7.3846), f(x^s) = -41.3846.
 - 3 Sign vector s is the same, $f^U = -41.3846.$
- Lower bound:

exact Best value

- Ocompute an interval envelope of the feasible set: $x \in [-7.3, 9.6] \times [-7.4, 13.4].$
- 2 Replace the bilinear terms with the McCormick envelope and solve the obtained LP: $f_{-}^{L} = -44.4189$.

Best optimal value:

- Upper bound:
 - Solve the scenario with A_c, b

 c_c: x* = (4.8056, -4.2500), f(x*) = -15.6111.
 - Output: Modify the coefficients using s = (1, -1) and solve the corresponding LP: x^s = (5.1538, -7.3846), f(x^s) = -41.3846.
 - 3 Sign vector s is the same, $f^U = -41.3846$.
- Lower bound:

exact Best value

- **1** Compute an interval envelope of the feasible set: $x \in [-8, 10] \times [-8, 15]$.
- 2 Replace the bilinear terms with the McCormick envelope and solve the obtained LP: $f^{L} = -48.3414$.

We discussed the problem of computing the optimal value range in interval linear programming...

- For programs of type $Ax \le b, x \ge 0$, we can compute the optimal value range exactly and quickly.
- For programs of type Ax ≤ b (or Ax = b, x ≥ 0), one of the bounds is difficult (time-consuming) to compute exactly, even with a fixed matrix A. So, we approximate it!

We discussed the problem of computing the optimal value range in interval linear programming...

- For programs of type $Ax \le b, x \ge 0$, we can compute the optimal value range exactly and quickly.
- For programs of type Ax ≤ b (or Ax = b, x ≥ 0), one of the bounds is difficult (time-consuming) to compute exactly, even with a fixed matrix A. So, we approximate it!

Thank you for your attention!