Approximating the Optimal Value Range in Interval Linear Programming

Elif Garajová (with Milan Hladík)
Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University
$11^{\text {th }}$ International Conference on Parametric Optimization and Related Topics (ParaoptXI)

Interval Linear Programming

Consider a linear programming problem...
minimize $c^{\top} x$ subject to $A x \leq b$

Interval Linear Programming

approximation and rounding $b \approx 3.14159$

Consider a linear programming problem...
minimize $c^{\top} x$ subject to $A x \leq b$

Interval Linear Programming

approximation and rounding $b=[3.141592,3.141593]$

Consider an interval linear programming problem... minimize $c^{\top} x$ subject to $A x \leq b$
estimating the future $c=[25.6,27.1]$

$$
\begin{aligned}
& \text { inexact measurements } \\
& \qquad a=[4.95,5.05]
\end{aligned}
$$

 \(c=[25.6,27.1]\)

Interval Linear Programming: Example

$$
\begin{array}{ll}
\operatorname{maximize} & x_{2} \\
\text { subject to } & {[-1,1] x_{1}+x_{2} \leq 0} \\
& x_{2} \leq 1
\end{array}
$$

-What are the possible feasible solutions?

- Which solutions are optimal for some scenario?
-What is the set/range of all optimal values?

Interval Linear Programming: Example

$$
\begin{array}{ll}
\operatorname{maximize} & x_{2} \\
\text { subject to } & {[-1,1] x_{1}+x_{2} \leq 0} \\
x_{2} \leq 1
\end{array}
$$

Optimal values: $\{0,1\}$

Optimal Value Range

Optimal value of an LP: $f(A, b, c)=\inf \left\{c^{\top} x: A x \leq b\right\}$

- $f(A, b, c)=-\infty$ if it is unbounded,
- $f(A, b, c)=\infty$ if it is infeasible,
- $f(A, b, c)=c^{T} x^{*}$ if there is an optimal solution x^{*}.

Lower bound of the optimal value range:

$$
\underline{f}(A, b, c)=\inf \{f(A, b, c): A \in A, b \in b, c \in c\}
$$

Upper bound of the optimal value range:

$$
\bar{f}(A, b, c)=\sup \{f(A, b, c): A \in A, b \in b, c \in c\}
$$

Computational Complexity

	$\min \boldsymbol{c}^{\top} x$	$\min c^{\top} x$	$\min c^{\top} x$
	$A x=b, x \geq 0$	$A x \leq b$	$A x \leq b, x \geq 0$
Best opt. value f	polynomial	NP-hard	polynomial
Worst opt. value \bar{f}	NP-hard	polynomial	polynomial

Dependency problem:
$\max x$ subject to $x=[0,1] \rightarrow \max x$ subject to $x \leq[0,1], x \geq[0,1]$
The optimal value rance changes from $[0,1]$ to $[0, \infty)$, Because the multiple occurrences of a coefficient are independent!

Describing the Feasible Set

Oettli-Prager (1964), Gerlach (1981)

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \text { solves } A x=b \Leftrightarrow\left|A_{c} x-b_{c}\right| \leq A_{\Delta}|x|+b_{\Delta} \\
& x \in \mathbb{R}^{n} \text { solves } A x \leq b \Leftrightarrow A_{c} x-A_{\Delta}|x| \leq \bar{b}
\end{aligned}
$$

$a_{\Delta} \llbracket \prod_{\underline{a}}^{a_{c}}$

The Polynomial Problems

- Best optimal value f of $\min c^{\top} x: A x \leq b, x \geq 0$

Non-negative variables \Rightarrow objective vector \underline{C} Largest feasible set: $\underline{A x} \leq \bar{b}, x \geq 0$

The Polynomial Problems

- Best optimal value f of $\min c^{\top} x: A x \leq b, x \geq 0$

Non-negative variables \Rightarrow objective vector \underline{C} Largest feasible set: $\underline{A x} \leq \bar{b}, x \geq 0$

- Worst optimal value \bar{f} of $\min c^{\top} x: A x \leq b, x \geq 0$

Non-negative variables \Rightarrow objective vector \bar{C} Smallest feasible set: $\bar{A} x \leq \underline{b}, x \geq 0$

The Polynomial Problems

- Best optimal value f of $\min c^{\top} x: A x \leq b, x \geq 0$

Non-negative variables \Rightarrow objective vector \underline{c} Largest feasible set: $\underline{A x} \leq \bar{b}, x \geq 0$

- Worst optimal value \bar{f} of $\min c^{\top} x: A x \leq b, x \geq 0$

Non-negative variables \Rightarrow objective vector \bar{c} Smallest feasible set: $\bar{A} x \leq \underline{b}, x \geq 0$

- Best optimal value f of $\min c^{\top} x: A x=b, x \geq 0$

Non-negative variables \Rightarrow objective vector \underline{c} Oettli-Prager: $\underline{A} x \leq \bar{b}, \bar{A} x \geq \underline{b}, x \geq 0$

The Polynomial Problems

- Best optimal value f of $\min c^{\top} x: A x \leq b, x \geq 0$

Non-negative variables \Rightarrow objective vector \underline{C} Largest feasible set: $\underline{A x} \leq \bar{b}, x \geq 0$

- Worst optimal value \bar{f} of $\min c^{\top} x: A x \leq b, x \geq 0$

Non-negative variables \Rightarrow objective vector \bar{C} Smallest feasible set: $\bar{A} x \leq \underline{b}, x \geq 0$

- Best optimal value f of $\min c^{\top} x: A x=b, x \geq 0$

Non-negative variables \Rightarrow objective vector \underline{c} Oettli-Prager: $\underline{A} x \leq \bar{b}, \bar{A} x \geq \underline{b}, x \geq 0$

- Worst optimal value \bar{f} of $\min c^{T} x: A x \leq b$
\rightarrow Dual program: $\max b^{\top} y: A^{\top} y=c, y \leq 0$

The Hard Problems

- Worst optimal value \bar{f} of $\min c^{\top} x: A x=b, x \geq 0$
\rightarrow by duality
- Best optimal value f of min $c^{\top} x: A x \leq b$
- The Gerlach Theorem: $A_{c} x-A_{\Delta}|x| \leq \bar{b}$
- Orthant decomposition: Solve an LP in each orthant and choose the overall minimum (or $-\infty$)
\Rightarrow For each $s \in\{ \pm 1\}^{n}$ solve:

$$
\begin{array}{ll}
\qquad & \begin{array}{ll}
\text { minimize } & \left(c_{c}-D_{s} c_{\Delta}\right)^{\top} x \\
\text { subject to } & \left(A_{c}-A_{\Delta} D_{S}\right) x \leq \bar{b} \\
\text { e diagonal matrix }
\end{array} \\
\text { for vector s }
\end{array}
$$

the diagonal matrix

The Hard Problems: A Closer Look

For each $s \in\{ \pm 1\}^{n}$ solve:

$$
\left.\begin{array}{ll}
\operatorname{minimize} & \left(c_{c}-D_{S} c_{\Delta}\right)^{T} x \\
\text { subject to } & \left(A_{c}-A_{\Delta} D_{S}\right) x \leq \bar{b} \\
& D_{S} x \geq 0
\end{array}\right\} \quad 2^{n} \text { linear programs }
$$

- If k of the variables are non-negative or non-positive, fix the corresponding signs in $s \Rightarrow 2^{n-k}$ linear programs
- If uncertainty only affects / columns, use vectors $s \in\{ \pm 1\}^{l}$ for the corresponding $/$ variables $\Rightarrow 2^{l}$ linear programs

The Hard Problems: A Closer Look

For each $s \in\{ \pm 1\}^{n}$ solve:

$$
\left.\begin{array}{ll}
\operatorname{minimize} & \left(c_{c}-D_{s} c_{\Delta}\right)^{T} x \\
\text { subject to } & \left(A_{c}-A_{\Delta} D_{s}\right) x \leq \bar{b}
\end{array}\right\} \quad 2^{n} \text { linear programs }
$$

- If k of the variables are non-negative or non-positive, fix the corresponding signs in $s \Rightarrow 2^{n-k}$ linear programs
- If uncertainty only affects / columns, use vectors $s \in\{ \pm 1\}^{l}$ for the corresponding $/$ variables $\Rightarrow 2^{l}$ linear programs
- What if the coefficient matrix A is fixed?

Intermezzo: A Matrix Norm

Consider the matrix norm

$$
\|A\|_{\infty, 1}=\max _{\|x\|_{\infty}=1}\|A x\|_{1}
$$

where $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$ and $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$.

Theorem (Rohn, 1996)

Deciding whether $\|A\|_{\infty, 1} \geq 1$ is NP-hard on the class of positive definite rational matrices.

A Hard Special Case

Theorem (Rohn, 1997)

Deciding whether $\bar{f}(A, b, c) \geq 1$ holds is NP-hard for problems of type $\min c^{\top} x$: $A x=b, x \geq 0$.

Proof idea:

$$
\begin{array}{ll}
\operatorname{minimize} & e^{T} x_{1}+e^{T} x_{2} \\
\text { subject to } & A^{-1} x_{1}-A^{-1} x_{2} \\
=[-e, e] \\
x_{1}, x_{2} \geq 0
\end{array}
$$

$$
\rightarrow \bar{f}=\|A\|_{\infty, 1}
$$

Feasibility, Optimality and Boundedness

- Weak infeasibility: Is there a scenario with no feasible solutions? $\Rightarrow \bar{f}=\infty$
- Strong optimality: Does every scenario have an optimal solution? $\Rightarrow f, \bar{f}$ are finite
- Weak unboundedness: Is there a scenario with an unbounded objective? $\Rightarrow \underline{f}=-\infty$

Theorem (Rohn, 1981; Rohn \& Kreslová, 1994)

- The system $A x=b, x \geq 0$ is strongly feasible iff for each $s \in\{ \pm 1\}^{m}$ the system $\left(A_{c}-D_{s} A_{\Delta}\right) x=b_{c}+D_{s} b_{\Delta}, x \geq 0$ is feasible.
- The system $A x \leq b$ is strongly feasible if and only if the system $\bar{A} x_{1}-\underline{A} x_{2} \leq \underline{b}, x_{1} \geq 0, x_{2} \geq 0$ is feasible.

(In)approximability Properties

Theorem (Rohn, 2000)

- For every $\delta>0$, computing a rational number that is δ-close to $\|A\|_{\infty, 1}$ is NP-hard.
- If $P \neq N P$, then there is no polynomial-time algorithm, which for each non-negative positive definite rational matrix $A \in \mathbb{R}^{n \times n}$ computes a rational approximation r to $\|A\|_{\infty, 1}$ satisfying

$$
\left|\frac{r-\|A\|_{\infty, 1}}{\|A\|_{\infty, 1}}\right| \leq \frac{1}{4 n^{2}}
$$

(In)approximability Properties

Theorem (Rohn, 2000)

- For every $\delta>0$, computing a rational number that is δ-close to $\|A\|_{\infty, 1}$ is NP-hard.
- If $P \neq N P$, then there is no polynomial-time algorithm, which for each non-negative positive definite rational matrix $A \in \mathbb{R}^{n \times n}$ computes a rational approximation r to $\|A\|_{\infty, 1}$ satisfying

$$
\left|\frac{r-\|A\|_{\infty, 1}}{\|A\|_{\infty, 1}}\right| \leq \frac{1}{4 n^{2}} .
$$

Approximating the Best Optimal Value

Goal: Find an upper bound f^{u} and a lower bound f^{L} on the best optimal value $f(A, b, c)$ of the problem minimize $c^{\top} x$ subject to $A x \leq b$.

- Upper bound: optimal value of any scenario in (A, b, c)
- Lower bound: optimal value of a relaxed problem

Lower Bound on the Best Case Value

$$
\min _{A \in A, c \in c}\left\{\min _{x \in \mathbb{R}^{n}} c^{\top} x \text { subject to } A x \leq \bar{b}\right\}
$$

Lower Bound on the Best Case Value

$$
\min c^{\top} x \text { subject to } A x \leq \bar{b}, \underline{c} \leq c \leq \bar{c}, \underline{A} \leq A \leq \bar{A}
$$

McCormick Envelopes

$$
\begin{gathered}
f(x, y)=x y, \underline{x} \leq x \leq \bar{x}, \underline{y} \leq y \leq \bar{y} \\
w \geq x y+x \underline{y}-\underline{x y}, \quad w \geq \bar{x} y+x \bar{y}-\overline{x y} \\
w \leq \bar{x} y+x \underline{y}-\bar{x} \underline{y}, \quad w \leq x \bar{y}+\underline{x y}-\underline{x} \bar{y}
\end{gathered}
$$

Lower Bound: McCormick Envelopes Relaxation

minimize $\sum_{i=1}^{n} w_{i}$
subject to $A x \leq \bar{b}$

$$
\begin{array}{ll}
\underline{c} \leq c \leq \bar{c} & \\
w_{i} \geq \underline{c_{i}} x_{i}+c_{i} x_{i}-\underline{c_{i} x_{i}}, & i \in\{1, \ldots, n\} \\
w_{i} \geq \overline{c_{i}} x_{i}+c_{i} \overline{\overline{x_{i}}}-\overline{\overline{c_{i} x_{i}}}, & i \in\{1, \ldots, n\} \\
w_{i} \leq \overline{c_{i}} x_{i}+c_{i} x_{i}-\overline{c_{i}} x_{i}, & i \in\{1, \ldots, n\} \\
w_{i} \leq c_{i} \overline{x_{i}}+\underline{c_{i}} x_{i}-\underline{c_{i} \overline{x_{i}}}, & i \in\{1, \ldots, n\}
\end{array}
$$

+ constraints for A

Upper Bound on the Best Case Value

```
Algorithm 3 Upper bound \(\underline{f}^{U}\) on \(\underline{f}\)
    : compute \(f^{*}:=f\left(A^{c}, b, c^{c}\right)\) and let \(x^{*}\) be the corresponding optimal solution
    2: repeat
3: put \(\underline{f}^{U}:=\underline{f}^{*}\)
        put \(\bar{s}:=\operatorname{sgn}\left(x^{*}\right)\)
        compute the optimal value \(f^{*}\) and the optimal solution \(x^{*}\) to (8)
    until \(\underline{f}^{s} \geq \underline{f}^{U}\) or \(s=\operatorname{sgn}\left(x^{*}\right)\)
    return \(\underline{f}^{U}:=\min \left\{\underline{f}^{U}, \underline{f}^{*}\right\}\)
```

and the initial bound $\underline{f}^{U}:=f\left(A^{c}, b, c^{c}\right)$. Then, we run an iterative local improvement method to find a scenario with as small as possible optimal value.

Put $s:=\operatorname{sgn}\left(x^{*}\right)$. The best case optimal value for the feasible set restricted to the orthant $\mathrm{D}_{s} x \geq 0$, is calculated by the linear program (6). This motivates us to choose the following scenario of (3) as a promising one for achieving the lowest optimal value.

$$
\begin{align*}
\underline{f}^{s}:= & \min \left(c^{c}-\mathrm{D}_{s} c^{\Delta}\right)^{T} x \\
& \quad \text { subject to }\left(A^{c}-A^{\Delta} \mathrm{D}_{s}\right) x \leq b \tag{8}
\end{align*}
$$

Optimal Value Range: Example

Example (Hladík, 2014)

$$
\text { minimize }[2,3] x_{1}+[6,7] x_{2}
$$

$$
\left(\begin{array}{rr}
-[4,5] & -[2,3] \\
{[4,5]} & -[1,2] \\
{[2,3]} & {[5,6]}
\end{array}\right) \times\left(\begin{array}{c}
-[11,12] \\
{[26,28]} \\
{[43,45]}
\end{array}\right)
$$

Optimal Value Range: Example

Example (Hladík, 2014)

$$
\begin{gathered}
\text { minimize }[2,3] x_{1}+[6,7] x_{2} \\
\left(\begin{array}{rr}
-[4,5] & -[2,3] \\
{[4,5]} & -[1,2] \\
{[2,3]} & {[5,6]}
\end{array}\right) \times \leq\left(\begin{array}{r}
-[11,12] \\
{[26,28]} \\
{[43,45]}
\end{array}\right)
\end{gathered}
$$

Worst optimal value:
maximize $\underline{b}^{\top} y$ subject to $\bar{A}^{\top} y \leq \bar{c}, \underline{A}^{\top} y \geq \underline{c}, y \leq 0$

$$
\rightarrow \bar{f}=1.8261
$$

Optimal Value Range: Example (cont.)

Best optimal value:

- Upper bound:
(1) Solve the scenario with $A_{c}, \bar{b}, c_{c}: x^{*}=(4.8056,-4.2500)$, $f\left(x^{*}\right)=-15.6111$.
(2) Modify the coefficients using $s=(1,-1)$ and solve the corresponding LP: $x^{s}=(5.1538,-7.3846), f\left(x^{5}\right)=-41.3846$.
(3) Sign vector s is the same, $f^{U}=-41.3846$.
- Lower bound:
(1) Compute an interval envelope of the feasible set:
$x \in[-7.3,9.6] \times[-7.4,13.4]$.
(2) Replace the bilinear terms with the McCormick envelope and solve the obtained LP: $\underline{f}^{L}=-44.4189$.

Optimal Value Range: Example (cont.)

Best optimal value:

- Upper bound:
(1) Solve the scenario with $A_{c}, \bar{b}, c_{c}: x^{*}=(4.8056,-4.2500)$, $f\left(x^{*}\right)=-15.6111$.
(2) Modify the coefficients using $s=(1,-1)$ and solve the corresponding LP: $x^{s}=(5.1538,-7.3846), f\left(x^{5}\right)=-41.3846$.
(3) Sign vector S is the same, $\underline{f}^{U}=-41.3846$.
- Lower bound:
exact best value
(1) Compute an interval envelope of the feasible set:
$x \in[-8,10] \times[-8,15]$.
(2) Replace the bilinear terms with the McCormick envelope and solve the obtained LP: ${\underset{\sim}{L}}^{L}=-48.3414$.

Conclusion

We discussed the problem of computing the optimal value range in interval linear programming...

- For programs of type $A x \leq b, x \geq 0$, we can compute the optimal value range exactly and quickly.
- For programs of type $\boldsymbol{A x} \leq \boldsymbol{b}$ (or $\boldsymbol{A x}=\boldsymbol{b}, x \geq 0$), one of the bounds is difficult (time-consuming) to compute exactly, even with a fixed matrix A. So, we approximate it!

Conclusion

We discussed the problem of computing the optimal value range in interval linear programming...

- For programs of type $A x \leq b, x \geq 0$, we can compute the optimal value range exactly and quickly.
- For programs of type $\boldsymbol{A x} \leq \boldsymbol{b}$ (or $\boldsymbol{A x}=\boldsymbol{b}, x \geq 0$), one of the bounds is difficult (time-consuming) to compute exactly, even with a fixed matrix A. So, we approximate it!

Thank you for your attention!

