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Interval Linear Programming

Consider a linear programming problem. . .

minimize cTx subject to Ax ≤ b

estimating the future
€25.6 ≤ c ≤ €27.1

inexact measurements
a = 5± 0.05g

approximation and rounding

b ≈ 3.14159
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Interval Linear Programming

Consider an interval linear programming problem. . .

minimize cTx subject to Ax ≤ b

estimating the future
c = [25.6, 27.1]

inexact measurements
a = [4.95, 5.05]

approximation and rounding

b = [3.141592, 3.141593]
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Interval Linear Programming: Example

maximize x2
subject to [−1, 1]x1 + x2 ≤ 0

x2 ≤ 1

• What are the possible feasible solutions?
• Which solutions are optimal for some scenario?
• What is the set/range of all optimal values?

Optimal values: {0, 1}

2



Interval Linear Programming: Example

maximize x2
subject to [−1, 1]x1 + x2 ≤ 0

x2 ≤ 1

x2

x1
-3 -2 -1 1 2 3

-1

1

Optimal values: {0, 1}
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Optimal Value Range

Optimal value of an LP: f(A,b, c) = inf{cTx : Ax ≤ b}

• f(A,b, c) = −∞ if it is unbounded,
• f(A,b, c) = ∞ if it is infeasible,
• f(A,b, c) = cTx∗ if there is an optimal solution x∗.

Lower bound of the optimal value range:

f(A,b, c) = inf {f(A,b, c) : A ∈ A,b ∈ b, c ∈ c}

Upper bound of the optimal value range:

f(A,b, c) = sup {f(A,b, c) : A ∈ A,b ∈ b, c ∈ c}
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Computational Complexity

min cTx min cTx min cTx
Ax = b, x ≥ 0 Ax ≤ b Ax ≤ b, x ≥ 0

Best opt. value f polynomial NP-hard polynomial
Worst opt. value f NP-hard polynomial polynomial

Dependency problem:

max x subject to x = [0, 1] → max x subject to x ≤ [0, 1], x ≥ [0, 1]

The optimal value range changes from [0, 1] to [0,∞), because
the multiple occurrences of a coefficient are independent!
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Describing the Feasible Set

Oettli–Prager (1964), Gerlach (1981)

x ∈ Rn solves Ax = b ⇔ |Acx− bc| ≤ A∆|x|+ b∆
x ∈ Rn solves Ax ≤ b ⇔ Acx− A∆|x| ≤ b

x1

x2

a

a

ac
a∆
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The Polynomial Problems

• Best optimal value f of min cTx : Ax ≤ b, x ≥ 0
Non-negative variables⇒ objective vector c
Largest feasible set: Ax ≤ b, x ≥ 0

• Worst optimal value f of min cTx : Ax ≤ b, x ≥ 0
Non-negative variables⇒ objective vector c
Smallest feasible set: Ax ≤ b, x ≥ 0

• Best optimal value f of min cTx : Ax = b, x ≥ 0
Non-negative variables⇒ objective vector c
Oettli–Prager: Ax ≤ b, Ax ≥ b, x ≥ 0

• Worst optimal value f of min cTx : Ax ≤ b
→ Dual program: max bTy : ATy = c, y ≤ 0
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The Hard Problems

• Worst optimal value f of min cTx : Ax = b, x ≥ 0
→ by duality

• Best optimal value f of min cTx : Ax ≤ b
• The Gerlach Theorem: Acx− A∆|x| ≤ b
• Orthant decomposition: Solve an LP in each orthant and
choose the overall minimum (or −∞)

⇒ For each s ∈ {±1}n solve:

minimize (cc − Dsc∆)Tx
subject to (Ac − A∆Ds)x ≤ b

Dsx ≥ 0
the diagonal matrix

for vector s
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The Hard Problems: A Closer Look

For each s ∈ {±1}n solve:

minimize (cc − Dsc∆)Tx
subject to (Ac − A∆Ds)x ≤ b

Dsx ≥ 0

 2n linear programs

• If k of the variables are non-negative or non-positive, fix
the corresponding signs in s⇒ 2n−k linear programs

• If uncertainty only affects l columns, use vectors s ∈ {±1}l

for the corresponding l variables⇒ 2l linear programs

• What if the coefficient matrix A is fixed?
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Intermezzo: A Matrix Norm

Consider the matrix norm

∥A∥∞,1 = max
∥x∥∞=1

∥Ax∥1,

where ∥x∥∞ = maxi|xi| and ∥x∥1 =
∑

i|xi|.

Theorem (Rohn, 1996)
Deciding whether ∥A∥∞,1 ≥ 1 is NP-hard on the class of
positive definite rational matrices.
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A Hard Special Case

Theorem (Rohn, 1997)
Deciding whether f(A,b, c) ≥ 1 holds is NP-hard for problems
of type min cTx : Ax = b, x ≥ 0.

Proof idea:

minimize eTx1 + eTx2
subject to A−1x1 − A−1x2 = [−e, e]

x1, x2 ≥ 0

→ f = ∥A∥∞,1
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Feasibility, Optimality and Boundedness

• Weak infeasibility: Is there a scenario with no feasible
solutions? ⇒ f = ∞

• Strong optimality: Does every scenario have an optimal
solution? ⇒ f, f are finite

• Weak unboundedness: Is there a scenario with an
unbounded objective? ⇒ f = −∞

Theorem (Rohn, 1981; Rohn & Kreslová, 1994)

• The system Ax = b, x ≥ 0 is strongly feasible iff for each
s ∈ {±1}m the system (Ac − DsA∆)x = bc + Dsb∆, x ≥ 0 is
feasible.

• The system Ax ≤ b is strongly feasible if and only if the
system Ax1 − Ax2 ≤ b, x1 ≥ 0, x2 ≥ 0 is feasible.
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(In)approximability Properties

Theorem (Rohn, 2000)

• For every δ > 0, computing a rational number that is
δ-close to ∥A∥∞,1 is NP-hard.

• If P ̸= NP, then there is no polynomial-time algorithm,
which for each non-negative positive definite rational
matrix A ∈ Rn×n computes a rational approximation r to
∥A∥∞,1 satisfying ∣∣∣∣∣r− ∥A∥∞,1

∥A∥∞,1

∣∣∣∣∣ ≤ 1
4n2 .

Also holds for the best optimal value!
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Approximating the Best Optimal Value

Goal: Find an upper bound fU and a lower bound fL on the best
optimal value f(A,b, c) of the problem

minimize cTx subject to Ax ≤ b.

• Upper bound: optimal value of any scenario in (A,b, c)
• Lower bound: optimal value of a relaxed problem
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Lower Bound on the Best Case Value

min
A∈A,c∈c

{
min
x∈Rn

cTx subject to Ax ≤ b
}

McCormick Envelopes

f(x, y) = xy, x ≤ x ≤ x, y ≤ y ≤ y

w ≥ xy+ xy− xy, w ≥ xy+ xy− xy,
w ≤ xy+ xy− xy, w ≤ xy+ xy− xy
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Lower Bound on the Best Case Value

min cTx subject to Ax ≤ b, c ≤ c ≤ c, A ≤ A ≤ A

McCormick Envelopes

f(x, y) = xy, x ≤ x ≤ x, y ≤ y ≤ y

w ≥ xy+ xy− xy, w ≥ xy+ xy− xy,
w ≤ xy+ xy− xy, w ≤ xy+ xy− xy
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Lower Bound: McCormick Envelopes Relaxation

minimize
n∑
i=1

wi

subject to Ax ≤ b
c ≤ c ≤ c
wi ≥ cixi + cixi − cixi, i ∈ {1, . . . ,n}
wi ≥ cixi + cixi − cixi, i ∈ {1, . . . ,n}
wi ≤ cixi + cixi − cixi, i ∈ {1, . . . ,n}
wi ≤ cixi + cixi − cixi, i ∈ {1, . . . ,n}

+ constraints for A
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Upper Bound on the Best Case Value

Milan Hladík. On approximation of the best case optimal value in interval linear programming (2014) 16



Optimal Value Range: Example

Example (Hladík, 2014)

minimize [2, 3]x1 + [6, 7]x2

−[4, 5] −[2, 3]
[4, 5] −[1, 2]
[2, 3] [5, 6]

 x ≤

−[11, 12]
[26, 28]
[43, 45]



Worst optimal value:

maximize bTy subject to ATy ≤ c, ATy ≥ c, y ≤ 0

→ f = 1.8261
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Optimal Value Range: Example (cont.)

Best optimal value:

• Upper bound:
1 Solve the scenario with Ac,b, cc: x∗ = (4.8056,−4.2500),
f(x∗) = −15.6111.

2 Modify the coefficients using s = (1,−1) and solve the
corresponding LP: xs = (5.1538,−7.3846), f(xs) = −41.3846.

3 Sign vector s is the same, fU = −41.3846.

• Lower bound:
1 Compute an interval envelope of the feasible set:
x ∈ [−7.3, 9.6]× [−7.4, 13.4].

2 Replace the bilinear terms with the McCormick envelope
and solve the obtained LP: fL = −44.4189.

exact best value
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Optimal Value Range: Example (cont.)

Best optimal value:

• Upper bound:
1 Solve the scenario with Ac,b, cc: x∗ = (4.8056,−4.2500),
f(x∗) = −15.6111.

2 Modify the coefficients using s = (1,−1) and solve the
corresponding LP: xs = (5.1538,−7.3846), f(xs) = −41.3846.

3 Sign vector s is the same, fU = −41.3846.

• Lower bound:
1 Compute an interval envelope of the feasible set:
x ∈ [−8, 10]× [−8, 15].

2 Replace the bilinear terms with the McCormick envelope
and solve the obtained LP: fL = −48.3414.

exact best value
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Conclusion

We discussed the problem of computing the optimal value
range in interval linear programming. . .

• For programs of type Ax ≤ b, x ≥ 0, we can compute the
optimal value range exactly and quickly.

• For programs of type Ax ≤ b (or Ax = b, x ≥ 0), one of the
bounds is difficult (time-consuming) to compute exactly,
even with a fixed matrix A. So, we approximate it!

Thank you for your attention!
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