## Seeking Optimality in Interval Linear Programming

Elif Garajová, Milan Hladík
Faculty of Mathematics and Physics, Charles University (Prague, Czech Republic)

The $18^{\text {th }}$ International Symposium on Scientific Computing, Computer Arithmetic, and Verified Numerical Computations (SCAN 2018)

## Interval Linear Programming

- An interval linear program is a family of linear programs

$$
\text { minimize } c^{T} x \text { subject to } A x=b, x \geq 0
$$

where $A \in[A], b \in[b], c \in[c]$.

- A linear program in the family is called a scenario.
- Dependency problem:
- $[A] x=[b] \rightarrow[A] x \leq[b],[A] x \geq[b]$
- $[A] x \leq[b] \rightarrow[A] x^{+}-[A] x^{-} \leq[b], x^{+}, x^{-} \geq 0$


## The Questions

-What are the feasible solutions?
-What is the set of optimal solutions and values?

- Is a given solution feasible?
- Is a given feasible solution also optimal?
- Is the interval linear program bounded?
- ...


## The Questions

-What are the feasible solutions?
-What is the set of optimal solutions and values?

- Is a given solution feasible?
- Is a given feasible solution also optimal?
- Is the interval linear program bounded?
- ...

> But how do we define feasibility, optimality and other properties?

## Seeking Optimal Values

Optimal value of an LP: $f(A, b, c)=\inf \left\{c^{\top} x: A x \leq b\right\}$

- $f(A, b, c)=-\infty$ if it is unbounded,
- $f(A, b, c)=\infty$ if it is infeasible,
- $f(A, b, c)=c^{\top} x^{*}$ if there is an optimal solution $x^{*}$.

Optimal value range of an ILP:

- Lower bound of the optimal value range:

$$
\underline{f([A],[b],[c])}=\inf \{f(A, b, c): A \in[A], b \in[b], c \in[c]\}
$$

- Upper bound of the optimal value range:

$$
\bar{f}([A],[b],[c])=\sup \{f(A, b, c): A \in[A], b \in[b], c \in[c]\}
$$

Other concepts: Set of optimal values, Duality Gap, ...

## Optimal Value Range

How to compute the optimal value rance $[f, \bar{f}]$ ?
Best optimal value:
$\underline{f}=\inf \underline{f}^{\top} x: \underline{A} x \leq \bar{b}, \bar{A} x \geq \underline{b}, x \geq 0$
Worst optimal value:
$\bar{f}=\sup _{s \in\{ \pm 1\}^{m}} f\left(A_{c}-\operatorname{diag}(s) A_{\Delta}, b_{c}+\operatorname{diag}(s) b_{\Delta}, \bar{c}\right)$

## Theorem (Rohn, 1997)

Deciding whether $\bar{f}(A,[b], c) \geq 1$ holds is $N P$-hard for interval linear programs of type $\min c^{\top} x: A x=[b], x \geq 0$.

## Weak and Strong Properties

- We can study, whether a given property holds for at least one scenario of the program (weak property), or whether it holds for all scenarios (strong property).
- A given vector $x$ is a weakly/strongly feasible solution to an interval linear program, if $x$ is a feasible solution for some/each scenario with $A \in[A], b \in[b], c \in[c]$.
- An interval linear program is weakly/strongly feasible, if some/each scenario of the program is feasible.


## Weak and Strong Feasibility

## Theorem (Oettli \& Prager, 1964; Gerlach, 1981)

The interval linear system $[A] x=[b]$ is weakly feasible $\Leftrightarrow\left|A_{c} x-b_{c}\right| \leq A_{\Delta}|x|+b_{\Delta}$ is feasible.
The interval linear system $[A] x \leq[b]$ is weakly feasible $\Leftrightarrow A_{c} x-A_{\Delta}|x| \leq \bar{b}$ is feasible.

## Theorem (Rohn, 1981; Rohn \& Kreslová, 1994)

The interval linear system $[A] x=[b]$ is strongly feasible $\Leftrightarrow\left(A_{c}-\operatorname{diag}(s) A_{\Delta}\right) x_{1}-\left(A_{c}+\operatorname{diag}(s) A_{\Delta}\right) x_{2}=b_{c}-\operatorname{diag}(s) b_{\Delta}$, $x_{1}, x_{2} \geq 0$ is feasible for each $s \in\{ \pm 1\}^{m}$.

The interval linear system $[A] x \leq[b]$ is strongly feasible $\Leftrightarrow \bar{A} x_{1}-\underline{A} x_{2} \leq \underline{b}, x_{1}, x_{2} \geq 0$ is feasible.

## Weak and Strong Optimality of a Solution

A given vector $x$ is a weakly/strongly optimal solution to an interval linear program, if $x$ is an optimal solution for some/each scenario with $A \in[A], b \in[b], c \in[c]$.

We have conditions for testing weak and strong optimality of a solution:

- M. Rada, M. Hladík, E. Garajová, Testing weak optimality of a given solution in interval linear programming revisited (2018).
- J. Luo, W. Li, Strong optimal solutions of interval linear programming (2013).

However, some of the cases are NP-hard to decide.

## Describing the Weakly Optimal Set

Computing the interval hull of the set of all weakly optimal solutions is an NP-hard problem, in general.

- Linear programming algorithms
- Interval simplex method (Machost, 1970; Gunn and Anders, 1981; Jansson, 1988; ...)
- Relaxations
- Interval relaxation and orthant decomposition
- Linearization of absolute value
- Parametric programming methods, Branch-and-bound
- Solving special cases
- Linear programs with interval objective or right-hand side
- Fixed coefficient matrix


## Weak and Strong Optimality of a Program

An interval linear program is weakly/strongly optimal, if some/each scenario of the program has an optimal solution.

## Theorem

An interval linear program $\min [c]^{\top} x:[A] x=[b], x \geq 0$ is weakly optimal if and only if the parametric program

$$
A x=b, x \geq 0, A^{\top} y \leq c, A \in[A], b \in[b], c \in[c]
$$

is feasible.

## Theorem

An interval linear program is strongly optimal if and only if it is strongly feasible and its dual program is also strongly feasible.

## The Complexity of Weak Optimality (ILP)

## Theorem

Testing weak optimality is NP-hard for all three basic types of interval linear programs.

## Why?

(1) $\min 0^{T} x:[A] x \leq[b]$ is weakly optimal $\Leftrightarrow[A] x \leq[b]$ is weakly feasible

## The Complexity of Weak Optimality (ILP)

## Theorem

Testing weak optimality is NP-hard for all three basic types of interval linear programs.

## Why?

(1) $\min 0^{\top} x:[A] x \leq[b]$ is weakly optimal
$\Leftrightarrow[A] x \leq[b]$ is weakly feasible
(2) $\min [c]^{\top} x:[A] x=[b], x \geq 0$ is weakly optimal $\Leftrightarrow \max [b]^{\top} y:[A]^{\top} y \leq[c]$ is weakly optimal

## The Complexity of Weak Optimality (ILP)

## Theorem

Testing weak optimality is NP-hard for all three basic types of interval linear programs.

## Why?

(1) $\min 0^{T} x:[A] x \leq[b]$ is weakly optimal
$\Leftrightarrow[A] x \leq[b]$ is weakly feasible
(2) $\min [c]^{\top} x:[A] x=[b], x \geq 0$ is weakly optimal $\Leftrightarrow \max [b]^{\top} y:[A]^{T} y \leq[c]$ is weakly optimal
(3) We omit the proof for $\min [c]^{\top} x:[A] x \leq[b], x \geq 0$.

## The Complexity of Strong Optimality (ILP)

## Theorem

Testing strong optimality is co-NP-hard for interval programs of types $\min [c]^{\top} x:[A] x=[b], x \geq 0$ and $\min [c]^{\top} x:[A] x \leq[b]$.

Why?
(1) $\min 0^{T} x:[A] x=[b], x \geq 0$ is strongly optimal
$\Leftrightarrow[A] x=[b], x \geq 0$ is strongly feasible

## The Complexity of Strong Optimality (ILP)

## Theorem

Testing strong optimality is co-NP-hard for interval programs of types $\min [c]^{\top} x:[A] x=[b], x \geq 0$ and $\min [c]^{\top} x:[A] x \leq[b]$.

Why?
(1) $\min 0^{\top} x:[A] x=[b], x \geq 0$ is strongly optimal
$\Leftrightarrow[A] x=[b], x \geq 0$ is strongly feasible
(2) $\min [c]^{\top} x:[A] x \leq[b]$ is strongly optimal
$\Leftrightarrow \max [b]^{\top} y:[A]^{\top} y=[c], y \leq 0$ is strongly optimal

## The Complexity of Strong Optimality (ILP)

## Theorem

Testing strong optimality is co-NP-hard for interval programs of types $\min [c]^{\top} x:[A] x=[b], x \geq 0$ and $\min [c]^{\top} x:[A] x \leq[b]$.

Why?
(1) $\min 0^{T} x:[A] x=[b], x \geq 0$ is strongly optimal $\Leftrightarrow[A] x=[b], x \geq 0$ is strongly feasible
(2) $\min [c]^{\top} x:[A] x \leq[b]$ is strongly optimal $\Leftrightarrow \max [b]^{\top} y:[A]^{\top} y=[c], y \leq 0$ is strongly optimal
(3) $\min [C]^{\top} x:[A] x \leq[b], x \geq 0$ is strongly optimal $\Leftrightarrow \bar{A} x \leq \underline{b}, x \geq 0, \underline{A}^{\top} y \leq \underline{c}, y \leq 0$ is feasible

## Overview of Complexity

|  | $\begin{gathered} \min [c]^{\top} x \\ {[A] x=[b], x \geq 0} \end{gathered}$ | $\min [c]^{\top} x$ $[A] x \leq[b]$ | $\begin{gathered} \min [C]^{\top} x \\ {[A] x \leq[b], x \geq 0} \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| $\begin{array}{ll} \text { E} & \text { strong feasibility } \\ \text { Noun } & \text { weak feasibility } \\ \frac{0}{2} & \text { strong optimality } \\ \frac{\pi}{0} & \text { weak optimality } \end{array}$ | co－NP－hard polynomial co－NP－hard NP－hard | polynomial NP－hard co－NP－hard NP－hard | polynomial polynomial polynomial NP－hard |
| ```.⿳亠二口灬土``` | polynomial polynomial ？ NP－hard | polynomial polynomial co－NP－hard polynomial | polynomial polynomial ？ polynomial |

## Basis Stability

## Definition

Given a basis $B \subseteq\{1, \ldots, n\}$, an interval linear program

$$
\text { minimize }[c]^{\top} x \text { subject to }[A] x=[b], x \geq 0
$$

is B -stable, if B is an optimal basis for each scenario.

## Theorem

Under unique B-stability, the set of all weakly optimal solutions is

$$
A_{B} x_{B} \leq \bar{b},-\bar{A}_{B} x_{B} \leq-\underline{b}, x_{B} \geq 0, x_{N}=0 .
$$

## Other Concepts of Feasibility

- A vector $x \in \mathbb{R}^{n}$ is a tolerance solution of $[A] x=[b]$ if for each $A \in[A]$ there exists $a b \in[b]$ such that $A x=b$ holds.
- A vector $x \in \mathbb{R}^{n}$ is a control solution of $[A] x=[b]$ if for each $b \in[b]$ there exists an $A \in[A]$ such that $A x=b$ holds.
- Split the coefficients to universally and existentially quantified: Let $[A]=\left[A^{\forall}\right]+\left[A^{\exists}\right],[b]=\left[b^{\forall}\right]+\left[b^{\exists}\right]$. A vector $x \in \mathbb{R}^{n}$ is an $A E$ solution of $[A] x=[b]$ if

$$
\begin{aligned}
& \left(\forall A^{\forall} \in\left[A^{\forall}\right]\right)\left(\forall b^{\forall} \in\left[b^{\forall}\right]\right)\left(\exists A^{\exists} \in\left[A^{\exists}\right]\right)\left(\exists b^{\exists} \in\left[b^{\exists}\right]\right): \\
& \left(A^{\forall}+A^{\exists}\right) x=b^{\forall}+b^{\exists} .
\end{aligned}
$$

## Generalized Strong Optimality

A vector $x \in \mathbb{R}^{n}$ is ${ }^{1}$...

- $a(\emptyset)$-strong optimal solution of the ILP if it is an optimal solution for some scenario with $A \in[A], b \in[b], c \in[c]$.
- a ([c])-strong optimal solution of the ILP if for each $c \in[c]$ there exist $A \in[A], b \in[b]$ such that $x$ is optimal for the scenario $(A, b, c)$.
- a ([b])-strong optimal solution of the ILP if for each $b \in[b]$ there exist $A \in[A], c \in[c]$ such that $x$ is optimal for the scenario $(A, b, c)$.
- ...
- a ([b], [c])-strong optimal solution of the ILP if for each $b \in[b], c \in[c]$ there exists $A \in[A]$ such that $x$ is optimal for the scenario $(A, b, c)$.
- an ([A], [b], [c])-strong optimal solution of the ILP if it is an optimal solution for each scenario with $A \in[A], b \in[b], c \in[c]$.

[^0]
## Generalized Optimality of a Program

## Theorem

An interval linear program min $[c]^{\top} x:[A] x=[b], x \geq 0$ is
(A)-strongly optimal if and only if the interval linear system

$$
\begin{aligned}
& {[A] x=b, x \geq 0, \underline{b} \leq b \leq \bar{b},} \\
& {[A]^{\top} y \leq c, \underline{c} \leq c \leq \bar{c}}
\end{aligned}
$$

is strongly feasible.

An analogous result can Be obtained for $(A, b)$-strong and $(A, c)$-strong optimality of an ILP.

## Even More Generalization

Generalized strong optimality considers only $\forall \exists$-quantified definitions. By changing the order of the quantifiers, we can introduce even further notions of optimality and feasibility ${ }^{2}$ :

- Is there a $c \in[c]$ such that the scenario $(A, b, c)$ has an optimal solution for each $A \in[A], b \in[b]$ ?
- Is there a $c \in[c]$ such that for each $A \in[A]$ there is a $b \in[b]$ such that the scenario $(A, b, c)$ has an optimal solution?

[^1]
## Even More Generalized Optimality of a Program

## Theorem

There is a $c \in[c]$ such that the scenario $(A, b, c)$ has an optimal solution for each $A \in[A], b \in[b]$ if and only if the interval linear system

$$
\begin{aligned}
& {[A] x=[b], x \geq 0,} \\
& {[A]^{\top} y \leq \bar{c}}
\end{aligned}
$$

is strongly feasible.

## Further Research

- Fast algorithms for tight enclosures of the optimal sets with respect to the various concepts of optimality.
- A unified systematic description of conditions for testing generalized strong optimality.
- Other properties of interval programs (boundedness, optimal values, etc.) in the generalized strong sense.
- Exploring a weaker notion of basis stability.


## Further Research

- Fast algorithms for tight enclosures of the optimal sets with respect to the various concepts of optimality.
- A unified systematic description of conditions for testing generalized strong optimality.
- Other properties of interval programs (boundedness, optimal values, etc.) in the generalized strong sense.
- Exptoring a weaker notion or basis stabitty.


## Further Research

- Fast algorithms for tight enclosures of the optimal sets with respect to the various concepts of optimality.
- A unified systematic description of conditions for testing generalized strong optimality.
- Other properties of interval programs (boundedness, optimal values, etc.) in the generalized strong sense.
- Exploring a weaker notion of basis stability.


## Further Research

- Fast algorithms for tight enclosures of the optimal sets with respect to the various concepts of optimality.
- A unified systematic description of conditions for testing generalized strong optimality.
- Other properties of interval programs (boundedness, optimal values, etc.) in the generalized strong sense.
- Exploring a weaker notion of basis stability.


## Further Research

- Fast algorithms for tight enclosures of the optimal sets with respect to the various concepts of optimality.
- A unified systematic description of conditions for testing generalized strong optimality.
- Other properties of interval programs (boundedness, optimal values, etc.) in the generalized strong sense.
- Exploring a weaker notion of basis stability.

Thanks for your attention!


[^0]:    ${ }^{1}$ Luo, J., Li, W., Strong optimal solutions of interval linear programming (2013).

[^1]:    ${ }^{2}$ Shary, S.P., A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity (2002).

