Seeking Optimality in Interval Linear Programming

Elif Garajová, Milan Hladík

Faculty of Mathematics and Physics, Charles University (Prague, Czech Republic)

The 18th International Symposium on Scientific Computing, Computer Arithmetic, and Verified Numerical Computations (SCAN 2018)

• An interval linear program is a family of linear programs

minimize $c^T x$ subject to $Ax = b, x \ge 0$

where $A \in [A], b \in [b], c \in [c]$.

- A linear program in the family is called a scenario.
- Dependency problem:
 - $[A]x = [b] \rightarrow [A]x \leq [b], [A]x \geq [b]$
 - $[A]x \le [b] \rightarrow [A]x^+ [A]x^- \le [b], x^+, x^- \ge 0$

- What are the feasible solutions?
- What is the set of optimal solutions and values?
- Is a given solution feasible?
- Is a given feasible solution also optimal?
- Is the interval linear program bounded?

• . . .

- What are the feasible solutions?
- What is the set of optimal solutions and values?
- Is a given solution feasible?
- Is a given feasible solution also optimal?
- Is the interval linear program bounded?

• . . .

But how do we define feasibility, optimality and other properties? Optimal value of an LP: $f(A, b, c) = \inf\{c^T x : Ax \le b\}$

- $f(A, b, c) = -\infty$ if it is unbounded,
- $f(A, b, c) = \infty$ if it is infeasible,
- $f(A, b, c) = c^T x^*$ if there is an optimal solution x^* .

Optimal value range of an ILP:

• Lower bound of the optimal value range:

 $\underline{f}([A], [b], [c]) = \inf \{ f(A, b, c) : A \in [A], b \in [b], c \in [c] \}$

• Upper bound of the optimal value range:

 $\bar{f}([A], [b], [c]) = \sup \{f(A, b, c) : A \in [A], b \in [b], c \in [c]\}$

Other concepts: Set of optimal values, Duality Gap, ...

How to compute the optimal value range $[f, \bar{f}]$?

Best optimal value: $\underline{f} = \inf \underline{c}^T x : \underline{A} x \le \overline{b}, \overline{A} x \ge \underline{b}, x \ge 0$

Worst optimal value: $\bar{f} = \sup_{s \in \{\pm 1\}^m} f(A_c - \operatorname{diag}(s)A_\Delta, b_c + \operatorname{diag}(s)b_\Delta, \bar{c})$

Theorem (Rohn, 1997)

Deciding whether $\overline{f}(A, [b], c) \ge 1$ holds is NP-hard for interval linear programs of type min $c^T x : Ax = [b], x \ge 0$.

Weak and Strong Properties

- We can study, whether a given property holds for at least one scenario of the program (weak property), or whether it holds for all scenarios (strong property).
- A given vector x is a weakly/strongly feasible solution to an interval linear program, if x is a feasible solution for some/each scenario with A ∈ [A], b ∈ [b], c ∈ [c].
- An interval linear program is weakly/strongly feasible, if some/each scenario of the program is feasible.

Theorem (Oettli & Prager, 1964; Gerlach, 1981)

The interval linear system [A]x = [b] is weakly feasible $\Leftrightarrow |A_cx - b_c| \le A_{\Delta}|x| + b_{\Delta}$ is feasible.

The interval linear system $[A]x \leq [b]$ is weakly feasible $\Leftrightarrow A_c x - A_{\Delta}|x| \leq \overline{b}$ is feasible.

Theorem (Rohn, 1981; Rohn & Kreslová, 1994)

The interval linear system [A]x = [b] is strongly feasible $\Leftrightarrow (A_c - \operatorname{diag}(s)A_{\Delta})x_1 - (A_c + \operatorname{diag}(s)A_{\Delta})x_2 = b_c - \operatorname{diag}(s)b_{\Delta},$ $x_1, x_2 \ge 0$ is feasible for each $s \in \{\pm 1\}^m$.

The interval linear system $[A]x \leq [b]$ is strongly feasible $\Leftrightarrow \overline{A}x_1 - \underline{A}x_2 \leq \underline{b}, x_1, x_2 \geq 0$ is feasible.

A given vector x is a weakly/strongly optimal solution to an interval linear program, if x is an optimal solution for some/each scenario with $A \in [A]$, $b \in [b]$, $c \in [c]$.

We have conditions for testing weak and strong optimality of a solution:

- M. Rada, M. Hladík, E. Garajová, Testing weak optimality of a given solution in interval linear programming revisited (2018).
- J. Luo, W. Li, Strong optimal solutions of interval linear programming (2013).

However, some of the cases are NP-hard to decide.

Computing the interval hull of the set of all weakly optimal solutions is an NP-hard problem, in general.

- Linear programming algorithms
 - Interval simplex method (Machost, 1970; Gunn and Anders, 1981; Jansson, 1988; ...)
- Relaxations
 - Interval relaxation and orthant decomposition
 - Linearization of absolute value
- · Parametric programming methods, Branch-and-bound
- Solving special cases
 - Linear programs with interval objective or right-hand side
 - Fixed coefficient matrix

An interval linear program is weakly/strongly optimal, if some/each scenario of the program has an optimal solution.

Theorem

An interval linear program min $[c]^T x : [A]x = [b], x \ge 0$ is weakly optimal if and only if the parametric program

$$Ax = b, x \ge 0, A^T y \le c, A \in [A], b \in [b], c \in [c]$$

is feasible.

Theorem

An interval linear program is strongly optimal if and only if it is strongly feasible and its dual program is also strongly feasible.

Testing weak optimality is NP-hard for all three basic types of interval linear programs.

Why?

1 min $0^T x : [A]x \le [b]$ is weakly optimal $\Leftrightarrow [A]x \le [b]$ is weakly feasible \checkmark Proved to be NP-hard

Testing weak optimality is NP-hard for all three basic types of interval linear programs.

Why?

- 1 min $0^T x : [A] x \le [b]$ is weakly optimal $\Leftrightarrow [A] x \le [b]$ is weakly feasible
- ② min[c]^Tx : [A]x = [b], x ≥ 0 is weakly optimal ⇔ max[b]^Ty : [A]^Ty ≤ [c] is weakly optimal

Testing weak optimality is NP-hard for all three basic types of interval linear programs.

Why?

- **1** min 0^{*T*}x : [*A*]x ≤ [*b*] is weakly optimal ⇔ [*A*]x ≤ [*b*] is weakly feasible
- ② min[c]^Tx : [A]x = [b], x ≥ 0 is weakly optimal ⇔ max[b]^Ty : [A]^Ty ≤ [c] is weakly optimal
- **3** We omit the proof for $\min[c]^T x : [A]x \le [b], x \ge 0$.

The Complexity of Strong Optimality (ILP)

Theorem

Testing strong optimality is co-NP-hard for interval programs of types $\min[c]^T x : [A]x = [b], x \ge 0$ and $\min[c]^T x : [A]x \le [b]$.

Why?

1 min $0^T x : [A]x = [b], x \ge 0$ is strongly optimal $\Leftrightarrow [A]x = [b], x \ge 0$ is strongly feasible Proved to be co-NP-bard

The Complexity of Strong Optimality (ILP)

Theorem

Testing strong optimality is co-NP-hard for interval programs of types $\min[c]^T x : [A]x = [b], x \ge 0$ and $\min[c]^T x : [A]x \le [b]$.

Why?

- 1 min $0^T x : [A]x = [b], x \ge 0$ is strongly optimal $\Leftrightarrow [A]x = [b], x \ge 0$ is strongly feasible
- ② min[c]^Tx : [A]x ≤ [b] is strongly optimal ⇔ max[b]^Ty : [A]^Ty = [c], y ≤ 0 is strongly optimal

The Complexity of Strong Optimality (ILP)

Theorem

Testing strong optimality is co-NP-hard for interval programs of types $\min[c]^T x : [A]x = [b], x \ge 0$ and $\min[c]^T x : [A]x \le [b]$.

Why?

- 1 min $0^T x : [A]x = [b], x \ge 0$ is strongly optimal $\Leftrightarrow [A]x = [b], x \ge 0$ is strongly feasible
- ② min[c]^Tx : [A]x ≤ [b] is strongly optimal ⇔ max[b]^Ty : [A]^Ty = [c], y ≤ 0 is strongly optimal
- **3** min[c]^Tx : [A]x ≤ [b], x ≥ 0 is strongly optimal ⇔ $\overline{A}x \le \underline{b}, x \ge 0, \underline{A}^T y \le \underline{c}, y \le 0$ is feasible

		$\min [c]^T x$ $[A]x = [b], x \ge 0$	$\min [c]^T x \\ [A]x \le [b]$	$\min [c]^T x$ $[A] x \le [b], x \ge 0$
of a program	strong feasibility	co-NP-hard	polynomial	polynomial
	weak feasibility	polynomial	NP-hard	polynomial
	strong optimality	co-NP-hard	co-NP-hard	polynomial
	weak optimality	NP-hard	NP-hard	NP-hard
of a solution	strong feasibility	polynomial	polynomial	polynomial
	weak feasibility	polynomial	polynomial	polynomial
	strong optimality	?	co-NP-hard	?
	weak optimality	NP-hard	polynomial	polynomial

Definition Given a basis $B \subseteq \{1, ..., n\}$, an interval linear program minimize $[c]^T x$ subject to $[A]x = [b], x \ge 0$ is **B-stable**, if B is an optimal basis for each scenario.

Theorem

Under unique B-stability, the set of all weakly optimal solutions is

$$\underline{A}_{B}x_{B} \leq \overline{b}, \ -\overline{A}_{B}x_{B} \leq -\underline{b}, \ x_{B} \geq 0, \ x_{N} = 0.$$

Other Concepts of Feasibility

- A vector x ∈ ℝⁿ is a tolerance solution of [A]x = [b] if for each A ∈ [A] there exists a b ∈ [b] such that Ax = b holds.
- A vector x ∈ ℝⁿ is a control solution of [A]x = [b] if for each b ∈ [b] there exists an A ∈ [A] such that Ax = b holds.
- Split the coefficients to universally and existentially quantified: Let $[A] = [A^{\forall}] + [A^{\exists}], [b] = [b^{\forall}] + [b^{\exists}]$. A vector $x \in \mathbb{R}^n$ is an AE solution of [A]x = [b] if

 $(\forall A^{\forall} \in [A^{\forall}])(\forall b^{\forall} \in [b^{\forall}])(\exists A^{\exists} \in [A^{\exists}])(\exists b^{\exists} \in [b^{\exists}]):$ $(A^{\forall} + A^{\exists})x = b^{\forall} + b^{\exists}.$ A vector $x \in \mathbb{R}^n$ is¹...

- a (\emptyset)-strong optimal solution of the ILP if it is an optimal solution for some scenario with $A \in [A], b \in [b], c \in [c]$.
- a ([c])-strong optimal solution of the ILP if for each $c \in [c]$ there exist $A \in [A], b \in [b]$ such that x is optimal for the scenario (A, b, c).
- a ([b])-strong optimal solution of the ILP if for each $b \in [b]$ there exist $A \in [A], c \in [c]$ such that x is optimal for the scenario (A, b, c).
- ...
- a ([b], [c])-strong optimal solution of the ILP if for each $b \in [b], c \in [c]$ there exists $A \in [A]$ such that x is optimal for the scenario (A, b, c).
- an ([A], [b], [c])-strong optimal solution of the ILP if it is an optimal solution for each scenario with $A \in [A], b \in [b], c \in [c]$.

¹Luo, J., Li, W., Strong optimal solutions of interval linear programming (2013).

An interval linear program $\min [c]^T x : [A]x = [b], x \ge 0$ is (A)-strongly optimal if and only if the interval linear system

$$[A]x = b, x \ge 0, \underline{b} \le b \le \overline{b}, \\ [A]^T y \le c, \underline{c} \le c \le \overline{c}$$

is strongly feasible.

An analogous result can be obtained for (A, b)-strong and (A, c)-strong optimality of an ILP.

Generalized strong optimality considers only ∀∃-quantified definitions. By changing the order of the quantifiers, we can introduce even further notions of optimality and feasibility²:

- Is there a c ∈ [c] such that the scenario (A, b, c) has an optimal solution for each A ∈ [A], b ∈ [b]?
- Is there a c ∈ [c] such that for each A ∈ [A] there is a b ∈ [b] such that the scenario (A, b, c) has an optimal solution?

²Shary, S.P., A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity (2002).

There is a $c \in [c]$ such that the scenario (A, b, c) has an optimal solution for each $A \in [A], b \in [b]$ if and only if the interval linear system

$$\begin{split} & [A]x = [b], x \geq 0, \\ & [A]^T y \leq \overline{c} \end{split}$$

is strongly feasible.

- Fast algorithms for tight enclosures of the optimal sets with respect to the various concepts of optimality.
- A unified systematic description of conditions for testing generalized strong optimality.
- Other properties of interval programs (boundedness, optimal values, etc.) in the generalized strong sense.
- Exploring a weaker notion of basis stability.

- Fast algorithms for tight enclosures of the optimal sets with respect to the various concepts of optimality.
- A unified systematic description of conditions for testing generalized strong optimality.
- Other properties of interval programs (boundedness, optimal values, etc.) in the generalized strong sense.
- Exploring a weaker notion of basis stability.

- Fast algorithms for tight enclosures of the optimal sets with respect to the various concepts of optimality.
- A unified systematic description of conditions for testing generalized strong optimality.
- Other properties of interval programs (boundedness, optimal values, etc.) in the generalized strong sense.
- Exploring a weaker notion of basis stability.

- Fast algorithms for tight enclosures of the optimal sets with respect to the various concepts of optimality.
- A unified systematic description of conditions for testing generalized strong optimality.
- Other properties of interval programs (boundedness, optimal values, etc.) in the generalized strong sense.
- Exploring a weaker notion of basis stability.

- Fast algorithms for tight enclosures of the optimal sets with respect to the various concepts of optimality.
- A unified systematic description of conditions for testing generalized strong optimality.
- Other properties of interval programs (boundedness, optimal values, etc.) in the generalized strong sense.
- Exploring a weaker notion of basis stability.

Thanks for your attention!