The Effects of Transformations on the Optimal Set in Interval Linear Programming

Elif Garajová ${ }^{1}$ (with Milan Hladík¹ \& Miroslav Rada²)
${ }^{1}$ Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University
${ }^{2}$ Faculty of Informatics and Statistics, University of Economics, Prague

Interval Linear Programming

Consider a linear programming problem...
minimize $c^{\top} x$ subject to $A x \leq b$

Interval Linear Programming

approximation and rounding $b \approx 3.14159$

Consider a linear programming problem...
minimize $c^{\top} x$ subject to $A x \leq b$

inexact measurements
$a=5 \pm 0.05 g$

Interval Linear Programming

approximation and rounding $b=[3.141592,3.141593]$

Consider an interval linear programming problem... minimize $c^{\top} x$ subject to $A x \leq b$
 $c=[25.6,27.1]$

inexact measurements

 $a=[4.95,5.05]$
Interval Linear Programming: Definitions

- An interval linear program is a family of linear programs

$$
\text { minimize } c^{\top} x \text { subject to } x \in \mathcal{M}(A, b)
$$

where $A \in A, b \in b, c \in c$ and $\mathcal{M}(A, b)$ is the feasible set.

- A linear program in the family is called a scenario.
- A vector x is a (weakly) feasible/optimal solution to the interval program, if x is a feasible/optimal solution for some scenario with $A \in A, b \in b, c \in c$.

Interval Linear Programming: Example

$$
\begin{array}{ll}
\operatorname{maximize} & x_{2} \\
\text { subject to } & {[-1,1] x_{1}+x_{2} \leq 0} \\
& x_{2} \leq 1
\end{array}
$$

-What are the possible feasible solutions?

- Which solutions are optimal for some scenario?
-What is the set/range of all optimal values?

Interval Linear Programming: Example

Interval Linear Programming: Example

$$
\begin{array}{ll}
\operatorname{maximize} & x_{2} \\
\text { subject to } & {[-1,1] x_{1}+x_{2} \leq 0} \\
x_{2} \leq 1
\end{array}
$$

Optimal values: $\{0,1\}$

Overview of Basic Results

Feasible solutions:

- Oettli-Prager: x solves $A x=b \Leftrightarrow\left|A_{c} x-b_{c}\right| \leq A_{\Delta}|x|+b_{\Delta}$
- Gerlach: x solves $A x \leq b \Leftrightarrow A_{c} x-A_{\Delta}|x| \leq \bar{b}$

Optimal values:

- Best optimal value (inequalities): For each $s \in\{ \pm 1\}^{n}$ solve

$$
\min \left(c_{c}-D_{s} c_{\Delta}\right)^{T} x \text { s. t. }\left(A_{c}-A_{\Delta} D_{s}\right) x \leq \bar{b}, D_{s} x \geq 0
$$

- Worst optimal value (inequalities):

$$
\max \underline{b}^{\top} y \text { s. t. } \bar{A}^{\top} y \leq \bar{c}, \underline{A}^{\top} y \geq \underline{c}, y \leq 0
$$

Optimal solutions:

- Special cases, approximations, ...

Dependency Problem (I)

$\max \quad x_{1}$
s. t. $[0,1] x_{1}-x_{2}=0$, $x_{2} \leq 1$,
$x_{1}, x_{2} \geq 0$.

Optimal set: $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \in[1, \infty)\right.$ and $\left.x_{2}=1\right\}$

Dependency Problem (I)

$\max \quad x_{1}$
s. t. $[0,1] x_{1}-x_{2}=0$, $x_{2} \leq 1$, $x_{1}, x_{2} \geq 0$.

$$
\begin{array}{ll}
\max & x_{1} \\
\text { s.t. } & {[0,1] x_{1}-x_{2} \leq 0} \\
& {[0,1] x_{1}-x_{2} \geq 0} \\
& x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Optimal set: $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \in[1, \infty)\right.$ and $\left.x_{2}=1\right\}$

Dependency Problem (I)

$\max \quad x_{1}$
s. t. $[0,1] x_{1}-x_{2}=0$, $x_{2} \leq 1$, $x_{1}, x_{2} \geq 0$.

$$
\begin{array}{ll}
\max & x_{1} \\
\text { s.t. } & 1 x_{1}-x_{2} \leq 0 \\
& 0 x_{1}-x_{2} \geq 0 \\
& x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Optimal set: $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \in[1, \infty)\right.$ and $\left.x_{2}=1\right\}$ The solution $(0,0)$ is now optimal, too!

Dependency Problem (I)

$\max \quad x_{1}$
s. t. $[0,1] x_{1}-x_{2}=0$, $x_{2} \leq 1$, $x_{1}, x_{2} \geq 0$.
$\max \quad x_{1}$
s. t. $[0,1] x_{1}-x_{2} \leq 0$,
$[0,1] x_{1}-x_{2} \geq 0$, $x_{2} \leq 1$, $x_{1}, x_{2} \geq 0$.

Optimal set: $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \in[1, \infty)\right.$ and $\left.x_{2}=1\right\}$ The solution $(0,0)$ is now optimal, too! ...But the feasible set is the same! (Li, 2015)

Dependency Problem (II)

Example (Hladík, 2012)

$$
[1,2] x \leq 2 \quad \rightarrow \quad[1,2] x^{+}-[1,2] x^{-} \leq 2, x^{+}, x^{-} \geq 0
$$

Original feasible set: $(-\infty, 2]$

Consider the new scenario $1 x^{+}-2 x^{-} \leq 2, x^{+}, x^{-} \geq 0$...
All real numbers are now feasible solutions, because we can express any real x as $x=x^{+}-x^{-}$, where

$$
x^{+}=\max (2 x, 0) \text { and } x^{-}=|x| .
$$

Transformations: The General Case

Transformations: The General Case

What if A is fixed?

Splitting Equations into Inequalities

Theorem 1

The optimal solution set of the interval linear program

$$
\min c^{\top} x: A x=b, x \geq 0
$$

is equal to the optimal solution set of the program

$$
\min c^{\top} x: A x \leq b_{1},-A x \leq-b_{2}, x \geq 0
$$

with $b_{1}=b_{2}=b$.

Splitting Equations into Inequalities

Theorem 1

The optimal solution set of the interval linear program

$$
\min c^{\top} x: A x=b, x \geq 0
$$

is equal to the optimal solution set of the program

$$
\min c^{\top} x: A x \leq b_{1},-A x \leq-b_{2}, x \geq 0
$$

with $b_{1}=b_{2}=b$.

Proof idea:

x^{*} optimal for scenario $\min c^{\top} x: b_{2} \leq A x \leq b_{1}, x \geq 0$
$\Rightarrow A x^{*}=b_{3} \in b \quad \Rightarrow x^{*}$ optimal for $\min c^{\top} x: A x=b_{3}, x \geq 0$

Imposing Non-negativity

Theorem 2

Let \mathcal{S} denote the optimal solution set of $\min c^{\top} x: A x \leq b$ and let \mathcal{S}^{\prime} be the optimal solution set of the program

$$
\min c_{1}^{\top} x^{+}-c_{2}^{\top} x^{-}: A x^{+}-A x^{-} \leq b, x^{+}, x^{-} \geq 0
$$

with $c_{1}=c_{2}=c$. Then, the following properties hold:

- If $x \in \mathcal{S}$, then there is $\left(x^{+}, x^{-}\right) \in \mathcal{S}^{\prime}$ with $x=x^{+}-x^{-}$.
- If $\left(x^{+}, x^{-}\right) \in \mathcal{S}^{\prime}$, then $x^{+}-x^{-} \in \mathcal{S}$.

Imposing Non-negativity

Theorem 2

Let \mathcal{S} denote the optimal solution set of $\min ^{\top} c^{\top} x: A x \leq b$ and let \mathcal{S}^{\prime} be the optimal solution set of the program

$$
\min c_{1}^{\top} x^{+}-c_{2}^{\top} x^{-}: A x^{+}-A x^{-} \leq b, x^{+}, x^{-} \geq 0
$$

with $c_{1}=c_{2}=c$. Then, the following properties hold:

- If $x \in \mathcal{S}$, then there is $\left(x^{+}, x^{-}\right) \in \mathcal{S}^{\prime}$ with $x=x^{+}-x^{-}$.
- If $\left(x^{+}, x^{-}\right) \in \mathcal{S}^{\prime}$, then $x^{+}-x^{-} \in \mathcal{S}$.

Proof idea:

For an optimal x^{*}, we have by dual feasibility some y^{*} with $A^{\top} y^{*}=c_{3} \in\left[c_{2}, c_{1}\right] \subseteq c$. Then, x^{*} is optimal for min $c_{3}^{\top} x: A x \leq b$.

Transformations: The Special Case

Transformations: The Special Case

Transformations: The Special Case

Conclusion

- In interval linear programming, the basic transformations may change the feasible/optimal set and other properties of a program.
- We have shown that the transformations do not affect the optimal set for problems with a fixed coefficient matrix (they may still change other properties!).
- Thus, we can directly generalize results concerning the optimal set of a particular type of programs to other types.

References

M. Fiedler

J. Nedoma
J. Ramitk
J. Rohn

Zimmermann

Interval linear programming: A survey (2012). M. Hladík. Linear Programming - New Frontiers in Theory and Applications.

References

M. Fiedler

J. Nedoma
J. Ramitk
J. Rohn

Zimmermann

Linear Optimization Problems with Inexact Data (2006). Authors: M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, K. Zimmermann

Interval linear programming: A survey (2012). M. Hladík. Linear Programming - New Frontiers in Theory and Applications.

Thank you for your attention!

